Download Free Photorefractive Optics Book in PDF and EPUB Free Download. You can read online Photorefractive Optics and write the review.

"This text covers the fundamental aspects and the recent advances of photorefractive optics. There is a market potential for developing photorefractive (PR) optic devices for the needs of informational infrastructures. Photorefractive Optics provides an intensive background and details state-of-the-art technological applications for these needs. The book is a reference text for technical staff, research scientists, and graduate students who are working in the field."--BOOK JACKET
"In a progressive format that moves from the elementary to the complex, the book begins with the basics of electromagnetic waves and periodic structures, examining the physics of photorefractive effects and the mixing of waves in these media. Classical electrodynamics is used to describe the mixing of waves in photorefractive media. Concepts in elementary solid state physics are also used to clarify the discussion on the transport of charges in photorefractive crystals. Following chapters take an in-depth look at optical phase conjugators and photorefractive resonators. The fundamental principles of gratings and holograms are examined in chapters 7 and 8. The manifold applications in optical information processing, optical interconnection, and neural networks are clearly detailed in the following three chapters. The last chapter is devoted to a timely look at the higher order photorefractive effect in optical fibers.".
This book highlights recent advances of optical spatial solitons in photorefractive materials ranging broadly from the coupling, modulation instability, effect of pyroelectricity, and the stability of photorefractive solitons, among other topics. Photorefractive solitons have been at the forefront of research because of their formation at low laser powers and unique saturable nonlinearity present in photorefractive materials which supports solitons in (2+1) D. There has been a spurt in research on photorefractive solitons recently, which has contributed to a greater understanding of the theoretical foundation of photorefractive solitons as also of their various interesting and practical applications. The book elucidates the diversity of photorefractive solitons and provides a good resource for students, researchers, and professionals in the area of nonlinear optics. ​
The photorefractive effect is now firmly established as one of the highest-sensitivity nonlinear optical effects, making it an attractive choice for use in many optical holographic processing applications. As with all technologies based on advanced materials, the rate of progress in the development of photorefractive applications has been principally limited by the rate at which breakthroughs in materials science have supplied better photorefractive materials. The last ten years have seen an upsurge of interest in photorefractive applications because of several advances in the synthesis and growth of new and sensitive materials. This book is a collection of many of the most important recent developments in photorefractive effects and materials. The introductory chapter, which provides the necessary tools for understanding a wide variety of photorefractive phenomena, is followed by seven contributed chapters that offer views of the state-of-the-art in several different material systems. The second chapter represents the most detailed study to date on the growth and photorefractive performance of BaTi03, one of the most important photorefractive ferroelectrlcs. The third chapter describes the process of permanently fixing holographic gratings in ferroelectrics, important for volumetric data storage with ultra-high data densities. The fourth chapter describes the discovery and theory of photorefractive spatial solitons. Photorefractive polymers are an exciting new class of photo refractive materials, described in the fifth chapter. Polymers have many advantages, primarily related to fabrication, that could promise a breakthrough to the marketplace because of ease and low-cost of manufacturing.
This volume is based on lectures and contributed papers presented at the Eleventh Course of the International School of Materials Science and Tech nology that was held in Erice, Sicily, Italy at the Ettore Majorana Center for Scientific Culture during the period 6-17 July 1986. The subject of the course was "Electro-optic and Photorefractive Materials: Applications in Sig nal Processing and Phase Conjugation" . The fields of electro-optics and photorefraction have developed rapidly since the invention of lasers just over twenty-five years ago. The possibil of altering the optical properties of a material by electric fields or by ity optical waves is of great importance for both pure science and for practical applications such as optical signal processing, telecommunications and opti cal display devices. These effects allow us to manipulate (modulate, deflect) and process a given light wave. Modulation, deflection and processing of light waves by means of the electro-optic effect is of fundamental importance in fiber optic telecommuniC1. tions and sensor systems w here the light signals can be processed prior or subsequent to transmission through the fibers. Thin film electro-optic materials with suitable electrode arrays on· the surface of the wave-guiding structures result in a technology often referred to as inte grated optics. In principle, integrated optics devices allow miniaturization and integration of many operations onto a single chip. The photorefractive effect, defined as a photo-induced change of the in dices of refraction, was the other topic treated in this course.
This is the first volume of a set of three within the Springer Series in Optical Sciences, and is devoted to photorefractive effects, photorefractive materials, and their applications. Since the publication of our first two Springer books on Photorefractive Materials and Their Applications (Topics in Applied Physics, Vols. 61 and 62) almost 20 years ago, a lot of research has been done in this area. New and often expected effects have been discovered, theoretical models developed, known effects finally explained, and novel applications proposed. We believe that the field has now reached a high level of maturity, even if research continues in all areas mentioned above and with new discoveries arriving quite regularly. We therefore have decided to invite some of the top experts in the field to put together the state of the art in their respective fields. This after we had been encouraged to do so for more than ten years by the publisher, due to the fact that the former volumes were long out of print.
This book, intended for students, researchers and engineers, is a collection of classic papers on photorefractive nonlinear optics. Included are landmark papers on fundamental photorefractive phenomena, two-wave mixing, four-wave mixing, phase conjugators and resonators, material growth and physics, and applications in image processing, optical storage and optical computing.
This book describes the processes of optical information recording in photorefractive crystals and applications of these materials in phase-conjugating devices, holographic interferometry, optical computers and sensors. It is in essence an extensive introduction to this new and rapidly developing area of quantum electronics. It presents physical concepts, fundamentals of theory, and important experimental data. A rigorous treatment of basic phenomena is accompanied by a quantitative analysis, which makes the book interesting to experts and accessible for newcomers to the field. Of particular interest to researchers is an extensive summary of basic physical and holographic parameters of all presently known photorefractive crystals and structures and also a detailed critical analysis of their applications.
This is the first of two volumes that review, for the first time, all major aspects of photorefractive effects and their applications. Photorefractive effects in electro-optic crystals are based on optically induced space-charge fields which ultimately alter the refractive indices by the electro-optic Pockels effect. The fundamental phenomena leading to photoinduced changes of refractive index, the materials requirements and experimental results on a variety of photorefractive materials are discussed and the most recent theoretical models describing these phenomena are presented. Interest in photorefractive materials has increased in recent years mainly because of their potential for nonlinear optical devices and for optical signals processing applications. Most of these applications are reviewed in the second volume devoted to this topic. The contributions to these two volumes are written by experts on each topic and are intended for scientists and engineers active in the field and for researchers and graduate students entering the field. Over 300 references to original papers on photorefractive and associated phenomena are cited.
This volume is based on lectures and contributed papers presented at the Eleventh Course of the International School of Materials Science and Tech nology that was held in Erice, Sicily, Italy at the Ettore Majorana Center for Scientific Culture during the period 6-17 July 1986. The subject of the course was "Electro-optic and Photorefractive Materials: Applications in Sig nal Processing and Phase Conjugation" . The fields of electro-optics and photorefraction have developed rapidly since the invention of lasers just over twenty-five years ago. The possibil of altering the optical properties of a material by electric fields or by ity optical waves is of great importance for both pure science and for practical applications such as optical signal processing, telecommunications and opti cal display devices. These effects allow us to manipulate (modulate, deflect) and process a given light wave. Modulation, deflection and processing of light waves by means of the electro-optic effect is of fundamental importance in fiber optic telecommuniC1. tions and sensor systems w here the light signals can be processed prior or subsequent to transmission through the fibers. Thin film electro-optic materials with suitable electrode arrays on· the surface of the wave-guiding structures result in a technology often referred to as inte grated optics. In principle, integrated optics devices allow miniaturization and integration of many operations onto a single chip. The photorefractive effect, defined as a photo-induced change of the in dices of refraction, was the other topic treated in this course.