Download Free Photoreactive Organic Thin Films Book in PDF and EPUB Free Download. You can read online Photoreactive Organic Thin Films and write the review.

Wolfgang Knoll is a former Directory of Polymer research at the Max Planck Institute. He is extremely well know for his research in this area. Zouheir Sekkat was a Postdoctoral researcher at Max Planck working under Professor Knoll. With Knoll's involvement, we can be confident that the best people in this field will be contributing to the reference.
Organic semiconductors are a central topic of advanced materials research. The book is aiming at bridging the gap between the development and production of devices and basic research on thin film characterisation using cutting-edge techniques in surface and interface science. Topics involve organic molecular-based sensors; interfaces in organic diodes and transistors; mobility in organic field effect transistors and space charge problems; integration of optoelectronic nanostructures; nonlinear optical properties of organic nanostructures; the wetting layer problem; how to get from functionalized molecules to nanoaggregates; optical, electrical and mechanical properties of organic nanofibers as well; as near field investigations of organic thin films.
This book deals with basic aspects of polymer electronics and optoelectronics. There is an enormous world-wide effort both in basic scientific research as well as in industrial development in the area of organic electronics. It is becoming increasingly clear that, if devices based on organic materials are ever going to have a significant relevance beyond being a cheap replacement for inorganic semiconductors, there will be a need to understand interface formation, film growth and functionality. A control of these aspects will allow the realisation of totally new device concepts exploiting the enormous flexibility inherent in organic chemistry. In this book we focus on oligomeric/molecular films as we believe that the control of molecular structures and interfaces provides highly defined systems which allow, on the one hand the study of the basic physics and on the other hand to find the important parameters necessary to improve organic devices.
This book provides concepts and experimental demonstrations for various types of molecular layer deposition (MLD) and organic multiple quantum dots (organic MQDs), which are typical tailored organic thin-film materials. Possible applications of MLD to optical interconnects, energy conversion systems, molecular targeted drug delivery, and cancer therapy are also proposed. First, the author reviews various types of MLD processes including vapor-phase MLD, liquid-phase MLD, and selective MLD. Next, he introduces organic MQDs, which are typical tailored organic thin-film materials produced by MLD. The author then describes the design of light modulators/optical switches, predicts their performance, and discusses impacts of the organic MQDs on them. He then also discusses impacts of the organic MQDs on optical interconnects within computers and on optical switching systems. Finally, the author presents MLD applications to molecular targeted drug delivery, photodynamic therapy, and laser surgery for cancer therapy. This book is intended for researchers, engineers, and graduate students in optoelectronics, photonics, and any other field where organic thin-film materials can be applied.
This major treatise on photochromism involving organic molecules and derived systems is a result of increased international interest in the field. Volume 1 offers a detailed examination of the synthesis and specific photochromic properties of the best-known photochromic and thermochromic compounds. It includes numerous physico-chemical methods by which photochromic substances can be studied as well as practical information and commercial applications for known photochromic families.
Very thin film materials have emerged as a highly interesting and useful quasi 2D-state functionality. They have given rise to numerous applications ranging from protective and smart coatings to electronics, sensors and display technology as well as serving biological, analytical and medical purposes. The tailoring of polymer film properties and functions has become a major research field. As opposed to the traditional treatise on polymer and resin-based coatings, this one-stop reference is the first to give readers a comprehensive view of the latest macromolecular and supramolecular film-based nanotechnology. Bringing together all the important facets and state-of-the-art research, the two well-structured volumes cover film assembly and depostion, functionality and patterning, and analysis and characterization. The result is an in-depth understanding of the phenomena, ordering, scale effects, fabrication, and analysis of polymer ultrathin films. This book will be a valuable addition for Materials Scientists, Polymer Chemists, Surface Scientists, Bioengineers, Coatings Specialists, Chemical Engineers, and Scientists working in this important research field and industry.
This first book to focus on the important and topical effect of light on polymeric materials reflects the multidisciplinary nature of the topic, building a bridge between polymer chemistry and physics, photochemistry and photophysics, and materials science. Written by one experienced author, a consistent approach is maintained throughout, covering such applications as nonlinear optical materials, core materials for optical waveguides, photoresists in the production of computer chips, photoswitches and optical memories. Advanced reading for polymer, physical and organic chemists, manufacturers of optoelectronic devices, chemical engineers, and materials scientists.
. Despite their capacity to carry out functions that previously were unobtainable, smart polymers and hydrogels tend to have painfully slow response times. On the other hand biological systems go through phase changes at an extremely fast rate. Reflexive Polymers and Hydrogels examines the natural systems that respond almost instantaneously to envi