Download Free Photoelectrochemical And Chemoenzymatic Reforming For Sustainable Fuel Production Book in PDF and EPUB Free Download. You can read online Photoelectrochemical And Chemoenzymatic Reforming For Sustainable Fuel Production and write the review.

With its focus on catalysis and addressing two very hot and timely topics with significant implications for our future lives, this will be a white book in the field. The authority behind this practical work is the IDECAT Network of Excellence, and the authors here outline how the use of catalysis will promote the more extensive use of renewable feedstocks in chemical and energy production. They present the latest applications, their applicability and results, making this a ready reference for researchers and engineers working in catalysis, chemistry, and industrial processes wishing to analyze options, outlooks and opportunities in the field.
This edited book provides an in-depth overview of carbon dioxide (CO2) transformations to sustainable power technologies. It also discusses the wide scope of issues in engineering avenues, key designs, device fabrication, characterizations, various types of conversions and related topics. It includes studies focusing on the applications in catalysis, energy conversion and conversion technologies, etc. This is a unique reference guide, and one of the detailed works is on this technology. The book is the result of commitments by leading researchers from various backgrounds and expertise. The book is well structured and is an essential resource for scientists, undergraduate, postgraduate students, faculty, R&D professionals, energy chemists and industrial experts.
This book focuses on the chemistry and processes for conversion and utilization of carbon dioxide. Topics include CO 2 utilization, its conversion to industrial chemicals and fuels, its coversion via synthesis gas, and new catalysts and chemical processes for conversion.
This book presents sustainable synthetic pathways and modern applications of ammonia. It focuses on the production of ammonia using various catalytic systems and its use in fuel cells, membrane, agriculture, and renewable energy sectors. The book highlights the history, investigation, and development of sustainable pathways for ammonia production, current challenges, and state-of-the-art reviews. While discussing industrial applications, it fills the gap between laboratory research and viable applications in large-scale production.
This book comprises a detailed overview on the role of photocatalysts for environmental remediation, hydrogen production and carbon dioxide reduction. Effective ways to enhance the photocatalytic activity of the material via doping, hybrid material, laser light and nanocomposites have been discussed in this book. The book also further elaborates the role of metal nanoparticles, rare earth doping, sensitizers, surface oxygen vacancy, interface engineering and band gap engineering for enhancing the photocatalytic activity. An approach to recover the photocatalytic material via immobilization is also presented. This book brings to light much of the recent research in the development of such semiconductor photocatalytic systems. The book will thus be of relevance to researchers in the field of: material science, environmental science & technology, photocatalytic applications, newer methods of energy generation & conversion and industrial applications.
This book presents specific key natural and artificial systems that are promising biocatalysts in the areas of health, agriculture, environment and energy. It provides a comprehensive account of the state of the art of these systems and outlines the significant progress made in the last decade using these systems to develop innovative, sustainable and environmentally friendly solutions. Chapters from expert contributors explore how natural enzymes and artificial systems tackle specific targets such as: climate change, carbon footprint and economy and carbon dioxide utilisation; nitrogen footprint and fixation and nitrous oxide mitigation; hydrogen production, fuel cells and energy from bacteria; biomass transformation and production of added-value compounds, as well as biosensors development. This book provides an important and inspiring account for the designing of new natural and artificial systems with enhanced properties, and it appeals not only to students and researchers working in the fields of energy, health, food and environment, but also to a wider audience of educated readers that are interested in these up-to-date and exciting subjects. Chapter “Carbon Dioxide Utilisation—The Formate Route” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book is a printed edition of the Special Issue "Immobilized Biocatalysts" that was published in Catalysts
Water, which plays an important role in every aspect of our daily lives, is the most valuable natural resource we have on this planet. Drinking, bathing, cooking, regeneration, cleaning, production, energy, and many other uses of water originate from some of its versatile, useful, basic, and unique features. The access, purification, and reuse of water on our planet, which is of course not endless and not available for direct use, is directly related to the water chemistry that explores its inimitable properties. This book includes research on water chemistry-related applications in environmental management and sustainable environmental issues such as water and wastewater treatment, water quality management, and other similar topics. The book consists of three sections, namely, water treatment, wastewater treatment, and water splitting, respectively, and includes 11 chapters. In these chapters, water-wastewater remediation methods, nanomaterials in water treatment, and water splitting processes are comprehensively reviewed in terms of water chemistry.The editors would like to record their sincere thanks to the authors for their contributions.