Download Free Photocatalysts For Organics Degradation Book in PDF and EPUB Free Download. You can read online Photocatalysts For Organics Degradation and write the review.

The quality of water is not only a technological and scientific issue, but a social and economic problem, in both developed and developing countries. Besides local regulations, which differ between regions and need constant upgrades, significant scientific developments are required in both the detection and removal of water contaminants. This Issue focuses on some recent advancements in the photocatalytic removal of organic pollutants, which is one of the aspects of the problem that involves the need of advanced catalysts and implies significant advancements in the field of materials science and chemical engineering.
Photocatalysis is a reaction which is accelerated by light while a heterogeneous reaction consists of two phases ( a solid and a liquid for example). Heterogeneous Photocatalysis is a fast developing science which to date has not been fully detailed in a monograph. This title discusses the basic principles of heterogeneous photocatalysis and describes the bulk and surface properties of semiconductors. Applications of various types of photoreactions are described and the problems related to the modeling and design of photoreactors are covered.
This book examines bioremediation technologies as a tool for environmental protection and management. It provides global perspectives on recent advances in the bioremediation of various environmental pollutants. Topics covered include comparative analysis of bio-gas electrification from anaerobic digesters, mathematical modeling in bioremediation, the evaluation of next-generation sequencing technologies for environmental monitoring in wastewater abatement; and the impact of diverse wastewater remediation techniques such as the use of nanofibers, microbes and genetically modified organisms; bioelectrochemical treatment; phytoremediation; and biosorption strategies. The book is targeted at scientists and researchers working in the field of bioremediation.
Water is one of the essential resources on our planet. Therefore, fresh water and the recycling of waste-water are very important topics in various areas. Energy-saving green technologies are a demand in this area of research. Photocatalysis comprises a class of reactions which use a catalyst activated by light. These reactions include the decomposition of organic compounds into environmental friendly water and carbon dioxide, leading to interesting properties of surfaces covered with a photocatalyst: they protect e.g. against incrustation of fouling matter, they are self-cleaning, antibacterial and viricidal. Therefore, they are attractive candidates for environmental applications such as water purification and waste-water treatment. This book introduces scientists and engineers to the fundamentals of photocatalysis and enlightens the potentials of photocatalysis to increase water quality. Also, strategies to improve the photocatalytic efficacy are pointed out: synthesis of better photocatalysts, combination of photocatalysis with other technologies, and the proper design of photocatalytic reactors. Implementation of applications and a chapter on design approaches for photocatalytic reactors round off the book. 'Photocatalysis and Water Purification' is part of the series on Materials for Sustainable Energy and Development edited by Prof. G.Q. Max Lu. The series covers advances in materials science and innovation for renewable energy, clean use of fossil energy, and greenhouse gas mitigation and associated environmental technologies.
This book presents the latest results related to photocatalytic inactivation/killing of microorganisms, which is a promising alternative disinfection method that produces less or even no disinfection byproduct. The book is divided into 13 chapters, which introduce readers to the latest developments in the photocatalytic disinfection of microorganisms, examine essential photocatalytic (PC) and photoelectrocatalytic (PEC) disinfection studies, and forecast and make recommendations for the further development of PC and PEC disinfection. Bringing together contributions by various leading research groups worldwide, it offers a valuable resource for researchers and the industry alike, as well as the general public. Taicheng An, PhD, is Chair Professor and Director at the Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China. Huijun Zhao, PhD, is Chair Professor and Director at the Centre for Clean Environment and Energy & Griffith School of Environment, Griffith University, Australia. Po Keung Wong, PhD, is a Professor at the School of Life Sciences, the Chinese University of Hong Kong, Hong Kong SAR, China.
Advances in Water Treatment and Pollution Prevention explores the most up-to-date studies in the field of water pollution. More specifically, this book examines the causes and effects of this threatening phenomenon and identifies the preventive measures that can be taken to contain, and even to defeat, water pollution worldwide. The papers gathered in this volume pinpoint the need to implement greener water treatments to prevent water pollution from impacting ecosystems, human well-being and economies any further. They also successfully outline the processes that have been studied, optimized and developed so far to sustain our environment. Advances in Water Treatment and Pollution Prevention will represent a valuable resource to academic researchers, students, institutions, environmentalists, and anyone interested in environmental policies aimed at safeguarding both the quality and the quantity of water.
Photocatalysis is a hot topic because it is an environmentally friendly approach toward the conversion of light energy into chemical energy at mild reaction environments. Also, it is well applied in several major areas such as water splitting, bacterial inactivation, and pollutants elimination, which is a possible solution to energy shortage and environmental issues. The fundamental knowledge and the frontier research progress in typical photocatalytic materials, such as TiO2-based and non-TiO2-based photocatalysts, are included in this book. Methods to improve the photocatalytic efficiency and to provide a hint for the rational design of the new photocatalysts are covered.
Photocatalytic materials can improve the efficiency and sustainability of processes and offer novel ways to address issues across a wide range of fields—from sustainable chemistry and energy production to environmental remediation. Current Developments in Photocatalysis and Photocatalytic Materials provides an overview of the latest advances in this field, offering insight into the chemistry and activity of the latest generation of photocatalytic materials.After an introduction to photocatalysis and photocatalytic materials, this book goes on to outline a wide selection of photocatalytic materials, not only covering typical metal oxide photocatalysts such as TiO2 but also exploring newly developed organic semiconducting photocatalysts, such as g-C3N4.Drawing on the experience of an expert team of contributors, Current Developments in Photocatalysis and Photocatalytic Materials highlights the new horizons of photocatalysis, in which photocatalytic materials will come to play an important role in our day-to-day lives. - Reviews developments in both organic- and inorganic-based materials for use in photocatalysis - Presents the fundamental chemistry and activity of a broad range of key photocatalytic materials, including both typical and novel materials - Highlights the role photocatalytic materials can play in sustainable applications
Bioremediation is an emerging field of environmental research. The objective of a bioremediation process is to immobilize contaminants (reactants) or to transform them into chemical products that do not pose a risk to human health and the environment. Toxicity and Waste Management Using Bioremediation provides relevant theoretical and practical frameworks and the latest empircal research findings on the remediation of contaminated soil and groundwater using bioorganisms. Focusing on effective waste treatment methodologies and management strategies that lead to improved human and environmental health, this timely publication is ideal for use by environmenal scientists, biologists, policy makers, graduate students, and scholars in the fields of environmental science, chemistry, and biology.