Download Free Phosphorus In Soil Profiles Of A Subtropical Rangeland And Associated Wetland Book in PDF and EPUB Free Download. You can read online Phosphorus In Soil Profiles Of A Subtropical Rangeland And Associated Wetland and write the review.

Phosphorus is one of the major nutrients limiting the productivity of terrestrial, wetland and aquatic ecosystems. Over the last decade several research projects were conducted on Florida's ecosystems from state and federal agencies and private industry to address water quality issues, and to develop management practices to control nutrient loads. Phosphorus Biogeochemistry in Sub-Tropical Ecosystems is the first thorough study of the role of phosphorus in ecological health and water quality ever published. Because of its vast and extensively studied ecosystems, Florida has often served as a national laboratory on current and future trends in ecosystem management. The reader will find studies at all levels of biological organization, from the cellular to entire ecological communities. The book is a definitive study of the role and behavior of phosphorus deposition in the upland/wetland/aquatic environment. The papers presented in this book are organized in specific groups: ecological analysis and global issues, biogeochemical transformations, biogeochemical responses, transport processes, phosphorus management, and synthesis. Although Florida's ecosystems are used as a case study, the results presented have global applications.
This open access book synthesizes leading-edge science and management information about forest and rangeland soils of the United States. It offers ways to better understand changing conditions and their impacts on soils, and explores directions that positively affect the future of forest and rangeland soil health. This book outlines soil processes and identifies the research needed to manage forest and rangeland soils in the United States. Chapters give an overview of the state of forest and rangeland soils research in the Nation, including multi-decadal programs (chapter 1), then summarizes various human-caused and natural impacts and their effects on soil carbon, hydrology, biogeochemistry, and biological diversity (chapters 2–5). Other chapters look at the effects of changing conditions on forest soils in wetland and urban settings (chapters 6–7). Impacts include: climate change, severe wildfires, invasive species, pests and diseases, pollution, and land use change. Chapter 8 considers approaches to maintaining or regaining forest and rangeland soil health in the face of these varied impacts. Mapping, monitoring, and data sharing are discussed in chapter 9 as ways to leverage scientific and human resources to address soil health at scales from the landscape to the individual parcel (monitoring networks, data sharing Web sites, and educational soils-centered programs are tabulated in appendix B). Chapter 10 highlights opportunities for deepening our understanding of soils and for sustaining long-term ecosystem health and appendix C summarizes research needs. Nine regional summaries (appendix A) offer a more detailed look at forest and rangeland soils in the United States and its Affiliates.
This volume explores major wetland ecosystem services, such as climate cooling and water quality improvement, and discusses the recent wetland conservation and restoration activities in China and neighboring countries. The role of wetlands in either cooling or warming the climate is analyzed as the net balance between carbon sequestration and emissions of methane and nitrous oxide. Wetlands start off having a net warming effect on the climate but in time switch to net cooling. Further, they remove 40% of the N and P from run-off and groundwater flow in agricultural areas, but wetlands need to amount to 10% of the total catchment area to make a difference. Reflecting on the recent large investment in wetland ecological studies in China and neighboring countries, the book addresses invasive species in coastal wetlands as well as the protection and wise use of tidal flats around the Yellow Sea. It also presents promising regional case studies on wetland restoration. The book is intended for academics, students and practitioners in the field of wetland ecology, management and restoration, as well as consultants and professionals working in conservation, wise use and environmental policy.
Inorganic fractionation of soils indicated that surficial soils contained larger pools of inorganic P and a significant portion of the inorganic P exists in the Ca-bound pool. Although STA 1 West Cell 5b often reduces TP concentrations below 50 ug L−1, the DOP and PP concentrations must be reduced more efficiently to meet the new standard of 10 ug L−1.
The globally important nature of wetland ecosystems has led to their increased protection and restoration as well as their use in engineered systems. Underpinning the beneficial functions of wetlands are a unique suite of physical, chemical, and biological processes that regulate elemental cycling in soils and the water column. This book provides an in-depth coverage of these wetland biogeochemical processes related to the cycling of macroelements including carbon, nitrogen, phosphorus, and sulfur, secondary and trace elements, and toxic organic compounds. In this synthesis, the authors combine more than 100 years of experience studying wetlands and biogeochemistry to look inside the black box of elemental transformations in wetland ecosystems. This new edition is updated throughout to include more topics and provide an integrated view of the coupled nature of biogeochemical cycles in wetland systems. The influence of the elemental cycles is discussed at a range of scales in the context of environmental change including climate, sea level rise, and water quality. Frequent examples of key methods and major case studies are also included to help the reader extend the basic theories for application in their own system. Some of the major topics discussed are: Flooded soil and sediment characteristics Aerobic-anaerobic interfaces Redox chemistry in flooded soil and sediment systems Anaerobic microbial metabolism Plant adaptations to reducing conditions Regulators of organic matter decomposition and accretion Major nutrient sources and sinks Greenhouse gas production and emission Elemental flux processes Remediation of contaminated soils and sediments Coupled C-N-P-S processes Consequences of environmental change in wetlands# The book provides the foundation for a basic understanding of key biogeochemical processes and its applications to solve real world problems. It is detailed, but also assists the reader with box inserts, artfully designed diagrams, and summary tables all supported by numerous current references. This book is an excellent resource for senior undergraduates and graduate students studying ecosystem biogeochemistry with a focus in wetlands and aquatic systems.
In 2002, the USDA Agricultural Research Service (ARS) developed a coordinated national research effort called GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) to provide information on the soil C status and GHG emission of current agricultural practices, and to develop new management practices to reduce net GHG emission and increase soil C sequestration primarily from soil management. Managing Agricultural Greenhouse Gases synthesizes the wealth of information generated from the GRACEnet project in over 30 ARS locations throughout the US and in numerous peer-reviewed articles. Although GRACEnet is an ARS project, contributors to this work include a variety of backgrounds and reported findings have important international applications. For example, many parts of the world possess similar ecoregions to the U.S. (e.g., northern Great Plains is similar to the Argentina Pampas and Ukraine Steppe).