Download Free Phonon Physics The Cutting Edge Book in PDF and EPUB Free Download. You can read online Phonon Physics The Cutting Edge and write the review.

The first two volumes in this series published twenty years ago contained chapters devoted to anharmonic properties of solids, ab initio calculations of phonons in metals and insulators, and surface phonons. In the intervening years each of these important areas of lattice dynamics has undergone significant developments. This volume is therefore concerned with reviewing the current status of these areas.Chapter one deals with the path-integral quantum Monte-Carlo method as a numerical simulation approach and looks at how this has been applied successfully to the determination of low temperature thermodynamic properties of anharmonic crystals and to certain dynamical properties as well. Chapter two is concerned with the calculation of static and dynamic properties of anharmonic crystals in the quantum regime. Chapter three discusses intrinsic anharmonic localized modes that have been intensively studied recently. Two topics, ab initio calculations of phonons in metals, and surface phonons are dealt with in the next chapter. The remaining two chapters are devoted to topics that have not been treated in previous volumes. One is phonon transport and the second is phonons in disordered crystals.The work described in the six chapters of this volume testifies to the continuing vitality of the field of dynamical properties of solids nearly a century after its founding.
The 2001 Spring Meeting of the 65th Deutsche Physikalische Gesellschaft was held together with the 65. Physikertagung, in Hamburg, during the pe riod March 26 30 2001. With more than 3500 conference attendees, a record has again been achieved after several years of stabilisation in participation. This proves the continuing and now even increasing, attraction of solid state physics, especially for young colleagues who often discuss for the first time their scientific results in public at this meeting. More than 2600 scientific pa pers were presented orally, as well as posters, among them about 120 invited lectures from Germany and from abroad. This Volume 41 of "Advances in Solid State Physics" contains the written versions of half of the latter. We nevertheless hope that the book truly reflects the current state of the field. Amazingly enough, the majority of the papers as well as the discussions at the meeting, concentrated on the nanostructured solid state. This re flects the currently extremely intensive quest for developing the electronic and magnetic device generations of the future, which stimulates science be sides the challenge of the unknown as has always been the case since the very beginning of Solid State Physics about 100 years ago.
The theory of solitons involves a broad variety of mathematical methods and appears in many areas of physics, technology, biology, and pure and applied mathematics. In this book, emphasis is placed on both theory (considering mathematical approaches for classical and quantum nonlinear systems ? both continuous and discrete) and experiment (with special discussions on high bit rate optical communications and pulse dynamics in optical materials).
The theory of solitons involves a broad variety of mathematical methods and appears in many areas of physics, technology, biology, and pure and applied mathematics. In this book, emphasis is placed on both theory (considering mathematical approaches for classical and quantum nonlinear systems — both continuous and discrete) and experiment (with special discussions on high bit rate optical communications and pulse dynamics in optical materials).
In 438 alphabetically-arranged essays, this work provides a useful overview of the core mathematical background for nonlinear science, as well as its applications to key problems in ecology and biological systems, chemical reaction-diffusion problems, geophysics, economics, electrical and mechanical oscillations in engineering systems, lasers and nonlinear optics, fluid mechanics and turbulence, and condensed matter physics, among others.
This book presents the current knowledge about nonlinear localized travelling excitations in crystals. Excitations can be vibrational, electronic, magnetic or of many other types, in many different types of crystals, as silicates, semiconductors and metals. The book is dedicated to the British scientist FM Russell, recently turned 80. He found 50 years ago that a mineral mica muscovite was able to record elementary charged particles and much later that also some kind of localized excitations, he called them quodons, was also recorded. The tracks, therefore, provide a striking experimental evidence of quodons existence. The first chapter by him presents the state of knowledge in this topic. It is followed by about 18 chapters from world leaders in the field, reviewing different aspects, materials and methods including experiments, molecular dynamics and theory and also presenting the latest results. The last part includes a personal narration of FM Russell of the deciphering of the marks in mica. It provides a unique way to present the science in an accessible way and also illustrates the process of discovery in a scientist's mind.
This conference was the third meeting organized in the framework of the European LOCNET project. The main topics discussed by this international research collaboration were localization by nonlinearity and spatial discreteness, and energy transfer (in crystals, biomolecules and Josephson arrays).
This book provides an introduction to localised excitations in spatially discrete systems, from the experimental, numerical and mathematical points of view. Also known as discrete breathers, nonlinear lattice excitations and intrinsic localised modes, these are spatially localised time periodic motions in networks of dynamical units. Examples of such networks are molecular crystals, biomolecules, and arrays of Josephson superconducting junctions. The book also addresses the formation of discrete breathers and their potential role in energy transfer in such systems. Contents: Computational Studies of Discrete Breathers; Vibrational Spectroscopy and Quantum Localization; Slow Manifolds; Localized Excitations in Josephson Arrays; Protein Functional Dynamics: Computational Approaches; Nonlinear Vibrational Spectroscopy: A Method to Study Vibrational Self-Trapping; Breathers in Biomolecules?; Statistical Physics of Localized Vibrations; Localization and Targeted Transfer of Atomic-Scale Nonlinear Excitations: Perspectives for Applications. Readership: Advanced graduate students and postdoctoral researchers in nonlinear dynamics.
An overview of the basic concepts, methods and applications of nonlinear low-dimensional solid state physics based on the Frenkel--Kontorova model and its generalizations. The book covers many important topics such as the nonlinear dynamics of discrete systems, the dynamics of solitons and their interaction, commensurate and incommensurate systems, statistical mechanics of nonlinear systems, and nonequilibrium dynamics of interacting many-body systems.