Download Free Philosophy Of Stem Education Book in PDF and EPUB Free Download. You can read online Philosophy Of Stem Education and write the review.

Winner of the American Educational Studies Association (AESA) Critics' Choice Book Award for 2016 Philosophy of STEM Education uses philosophical methods to investigate STEM education's purpose and assumptions. It details the why (axiology), the how (epistemology) and the what (ontology) of STEM by drawing upon a variety of philosophies of education, science, mathematics, and technology.
The second decade of the 21st century has seen governments and industry globally intensify their focus on the role of science, technology, engineering and mathematics (STEM) as a vehicle for future economic prosperity. Economic opportunities for new industries that are emerging from technological advances, such as those emerging from the field of artificial intelligence also require greater capabilities in science, mathematics, engineering and technologies. In response to such opportunities and challenges, government policies that position STEM as a critical driver of economic prosperity have burgeoned in recent years. Common to all these policies are consistent messages that STEM related industries are the key to future international competitiveness, productivity and economic prosperity. This book presents a contemporary focus on significant issues in STEM teaching, learning and research that are valuable in preparing students for a digital 21st century. The book chapters cover a wide spectrum of issues and topics using a wealth of research methodologies and methods ranging from STEM definitions to virtual reality in the classroom; multiplicative thinking; STEM in pre-school, primary, secondary and tertiary education, opportunities and obstacles in STEM; inquiry-based learning in statistics; values in STEM education and building academic leadership in STEM. The book is an important representation of some of the work currently being done by research-active academics. It will appeal to academics, researchers, teacher educators, educational administrators, teachers and anyone interested in contemporary STEM Education related research in a rapidly changing globally interconnected world. Contributors are: Natalie Banks, Anastasios (Tasos) Barkatsas, Amanda Berry, Lisa Borgerding, Nicky Carr, Io Keong Cheong, Grant Cooper, Jan van Driel, Jennifer Earle, Susan Fraser, Noleine Fitzallen, Tricia Forrester, Helen Georgiou, Andrew Gilbert, Ineke Henze, Linda Hobbs, Sarah Howard, Sylvia Sao Leng Ieong, Chunlian Jiang, Kathy Jordan, Belinda Kennedy, Zsolt Lavicza, Tricia Mclaughlin, Wendy Nielsen, Shalveena Prasad, Theodosia Prodromou, Wee Tiong Seah, Dianne Siemon, Li Ping Thong, Tessa E. Vossen and Marc J. de Vries.
"This reference brings together an impressive array of research on the development of Science, Technology, Engineering, and Mathematics curricula at all educational levels"--Provided by publisher.
This book provides an introduction to the philosophy of technology that is accessible to non-philosophers. It offers a survey of the current state-of-affairs in the philosophy of technology and also discusses the relevance of that for teaching about technology. The book includes questions and assignments and offers an extensive annotated bibliography for those who want to read more about the discipline.
Constructivism is one of the most influential theories in contemporary education and learning theory. It has had great influence in science education. The papers in this collection represent, arguably, the most sustained examination of the theoretical and philosophical foundations of constructivism yet published. Topics covered include: orthodox epistemology and the philosophical traditions of constructivism; the relationship of epistemology to learning theory; the connection between philosophy and pedagogy in constructivist practice; the difference between radical and social constructivism, and an appraisal of their epistemology; the strengths and weaknesses of the Strong Programme in the sociology of science and implications for science education. The book contains an extensive bibliography. Contributors include philosophers of science, philosophers of education, science educators, and cognitive scientists. The book is noteworthy for bringing this diverse range of disciplines together in the examination of a central educational topic.
This edited volume focuses on the reform and research of STEM education from international perspectives considering the sociocultural perspectives of different educational contexts. It shows the impact of political and cultural contexts on the reform of science education.
STEM Education 2.0 discusses the most recent research on important selected K-12 STEM topics by synthesizing previous research and offering new research questions. The contributions range from analysis of key STEM issues that have been studied for more than two decades to topics that have more recently became popular, such as maker space and robotics. In each chapter, nationally and internationally known STEM experts review key literature in the field, share findings of their own research with its implications for K-12 STEM education, and finally offer future research areas and questions in the respected area they have been studying. This volume provides diverse and leading voices in the future of STEM education and STEM education research.
Winner of the American Educational Studies Association (AESA) Critics' Choice Book Award for 2016 Philosophy of STEM Education uses philosophical methods to investigate STEM education's purpose and assumptions. It details the why (axiology), the how (epistemology) and the what (ontology) of STEM by drawing upon a variety of philosophies of education, science, mathematics, and technology.
This book brings researchers from across the world to share their expertise, experience, research and reflections on science education in India to make the trends and innovations visible. The thematic parts of the book discuss science education: overviews across K-16 levels; inclusivity and access for underrepresented and marginalized sections; use of innovations including technology in the teaching; and implications for research, practice, innovation and creativity. The book should be of special interest to researchers, school administrators, curriculum designers and policymakers. A timely compilation for current and future generations of academic researchers, teachers and policymakers who are interested in examining the issues facing one of the largest education systems in the world. The book offers unique insights into contemporary topics such as girls in STEM subjects, curriculum reform and developing a generation of future creative thinkers. -Professor Vaille Dawson, The University of Western Australia, Australia. It provides a panorama of challenges in a country of more than 1.3 billion people, 50% being below the age of 25 years. The book arrives at a time in which there are discouraging trends, including a decrease in funding for education. The book chapters are centred on issues that warrant debate to foster awareness of the roles of science education in India and priorities and possibilities for expanding horizons on the road ahead. -Professor Kenneth Tobin, The City University of New York, New York, USA.