Download Free Philosophy Of Mathematics And Mathematical Practice In The Seventeenth Century Book in PDF and EPUB Free Download. You can read online Philosophy Of Mathematics And Mathematical Practice In The Seventeenth Century and write the review.

1. Philosophy of Mathematics and Mathematical Practice in the Early Seventeenth Century p. 8 1.1 The Quaestio de Certitudine Mathematicarum p. 10 1.2 The Quaestio in the Seventeenth Century p. 15 1.3 The Quaestio and Mathematical Practice p. 24 2. Cavalieri's Geometry of Indivisibles and Guldin's Centers of Gravity p. 34 2.1 Magnitudes, Ratios, and the Method of Exhaustion p. 35 2.2 Cavalieri's Two Methods of Indivisibles p. 38 2.3 Guldin's Objections to Cavalieri's Geometry of Indivisibles p. 50 2.4 Guldin's Centrobaryca and Cavalieri's Objections p. 56 3. Descartes' Geometrie p. 65 3.1 Descartes' Geometrie p. 65 3.2 The Algebraization of Mathematics p. 84 4. The Problem of Continuity p. 92 4.1 Motion and Genetic Definitions p. 94 4.2 The "Causal" Theories in Arnauld and Bolzano p. 100 4.3 Proofs by Contradiction from Kant to the Present p. 105 5. Paradoxes of the Infinite p. 118 5.1 Indivisibles and Infinitely Small Quantities p. 119 5.2 The Infinitely Large p. 129 6. Leibniz's Differential Calculus and Its Opponents p. 150 6.1 Leibniz's Nova Methodus and L'Hopital's Analyse des Infiniment Petits p. 151 6.2 Early Debates with Cluver and Nieuwentijt p. 156 6.3 The Foundational Debate in the Paris Academy of Sciences p. 165 Appendix Giuseppe Biancani's De Mathematicarum Natura p. 178 Notes p. 213 References p. 249 Index p. 267.
There is an urgent need in philosophy of mathematics for new approaches which pay closer attention to mathematical practice. This book will blaze the trail: it offers philosophical analyses of important characteristics of contemporary mathematics and of many aspects of mathematical activity which escape purely formal logical treatment.
Galileo’s dictum that the book of nature “is written in the language of mathematics” is emblematic of the accepted view that the scientific revolution hinged on the conceptual and methodological integration of mathematics and natural philosophy. Although the mathematization of nature is a distinctive and crucial feature of the emergence of modern science in the seventeenth century, this volume shows that it was a far more complex, contested, and context-dependent phenomenon than the received historiography has indicated, and that philosophical controversies about the implications of mathematization cannot be understood in isolation from broader social developments related to the status and practice of mathematics in various commercial, political, and academic institutions. Contributors: Roger Ariew, U of South Florida; Richard T. W. Arthur, McMaster U; Lesley B. Cormack, U of Alberta; Daniel Garber, Princeton U; Ursula Goldenbaum, Emory U; Dana Jalobeanu, U of Bucharest; Douglas Jesseph, U of South Florida; Carla Rita Palmerino, Radboud U, Nijmegen and Open U of the Netherlands; Eileen Reeves, Princeton U; Christopher Smeenk, Western U; Justin E. H. Smith, U of Paris 7; Kurt Smith, Bloomsburg U of Pennsylvania.
First published in 2003. Routledge is an imprint of Taylor & Francis, an informa company.
In the four decades since Imre Lakatos declared mathematics a "quasi-empirical science," increasing attention has been paid to the process of proof and argumentation in the field -- a development paralleled by the rise of computer technology and the mounting interest in the logical underpinnings of mathematics. Explanantion and Proof in Mathematics assembles perspectives from mathematics education and from the philosophy and history of mathematics to strengthen mutual awareness and share recent findings and advances in their interrelated fields. With examples ranging from the geometrists of the 17th century and ancient Chinese algorithms to cognitive psychology and current educational practice, contributors explore the role of refutation in generating proofs, the varied links between experiment and deduction, the use of diagrammatic thinking in addition to pure logic, and the uses of proof in mathematics education (including a critique of "authoritative" versus "authoritarian" teaching styles). A sampling of the coverage: The conjoint origins of proof and theoretical physics in ancient Greece. Proof as bearers of mathematical knowledge. Bridging knowing and proving in mathematical reasoning. The role of mathematics in long-term cognitive development of reasoning. Proof as experiment in the work of Wittgenstein. Relationships between mathematical proof, problem-solving, and explanation. Explanation and Proof in Mathematics is certain to attract a wide range of readers, including mathematicians, mathematics education professionals, researchers, students, and philosophers and historians of mathematics.
This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled ‘The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,’ reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,’ discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincaré, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal.
What was the basis for the adoption of mathematics as the primary mode of discourse for describing natural events by a large segment of the philosophical community in the seventeenth century? In answering this question, this book demonstrates that a significant group of philosophers shared the belief that there is no necessary correspondence between external reality and objects of human understanding, which they held to include the objects of mathematical and linguistic discourse. The result is a scholarly reliable, but accessible, account of the role of mathematics in the works of (amongst others) Galileo, Kepler, Descartes, Newton, Leibniz, and Berkeley. This impressive volume will benefit scholars interested in the history of philosophy, mathematical philosophy and the history of mathematics.
This ebook is a selective guide designed to help scholars and students of social work find reliable sources of information by directing them to the best available scholarly materials in whatever form or format they appear from books, chapters, and journal articles to online archives, electronic data sets, and blogs. Written by a leading international authority on the subject, the ebook provides bibliographic information supported by direct recommendations about which sources to consult and editorial commentary to make it clear how the cited sources are interrelated related. This ebook is a static version of an article from Oxford Bibliographies Online: Philosophy, a dynamic, continuously updated, online resource designed to provide authoritative guidance through scholarship and other materials relevant to the study Philosophy. Oxford Bibliographies Online covers most subject disciplines within the social science and humanities, for more information visit www.oxfordbibligraphies.com.
Contemporary philosophy of mathematics offers us an embarrassment of riches. Among the major areas of work one could list developments of the classical foundational programs, analytic approaches to epistemology and ontology of mathematics, and developments at the intersection of history and philosophy of mathematics. But anyone familiar with contemporary philosophy of mathematics will be aware of the need for new approaches that pay closer attention to mathematical practice. This book is the first attempt to give a coherent and unified presentation of this new wave of work in philosophy of mathematics. The new approach is innovative at least in two ways. First, it holds that there are important novel characteristics of contemporary mathematics that are just as worthy of philosophical attention as the distinction between constructive and non-constructive mathematics at the time of the foundational debates. Secondly, it holds that many topics which escape purely formal logical treatment - such as visualization, explanation, and understanding - can nonetheless be subjected to philosophical analysis. The Philosophy of Mathematical Practice comprises an introduction by the editor and eight chapters written by some of the leading scholars in the field. Each chapter consists of short introduction to the general topic of the chapter followed by a longer research article in the area. The eight topics selected represent a broad spectrum of contemporary philosophical reflection on different aspects of mathematical practice: diagrammatic reasoning and representation systems; visualization; mathematical explanation; purity of methods; mathematical concepts; the philosophical relevance of category theory; philosophical aspects of computer science in mathematics; the philosophical impact of recent developments in mathematical physics.
The Element begins by claiming that Imre Lakatos (1922–74) in his famous paper 'Proofs and Refutations' (1963–64) was the first to introduce the historical approach to philosophy of mathematics. Section 2 gives a detailed analysis of Lakatos' ideas on the philosophy of mathematics. Lakatos died at the age of only 51, and at the time of this death had plans to continue his work on philosophy of mathematics which were never carried out. However, Lakatos' historical approach to philosophy of mathematics was taken up by other researchers in the field, and Sections 3 and 4 of the Element give an account of how they developed this approach. Then Section 5 gives an overview of what has been achieved so far by the historical approach to philosophy of mathematics and considers what its prospects for the future might be.