Download Free Philosophical Logic And Artificial Intelligence Book in PDF and EPUB Free Download. You can read online Philosophical Logic And Artificial Intelligence and write the review.

cians concerned with using logical tools in philosophy have been keenly aware of the limitations that arise from the original con centration of symbolic logic on the idiom of mathematics, and many of them have worked to create extensions of the received logical theories that would make them more generally applicable in philosophy. Carnap's Testability and Meaning, published in 1936 and 1937, was a good early example of this sort of research, motivated by the inadequacy of first-order formalizations of dis 'This sugar cube is soluble in water'. positional sentences like And in fact there is a continuous history of work on this topic, extending from Carnap's paper to Shoham's contribution to the present volume . . Much of the work in philosophical logic, and much of what has appeared in The Journal of Philosophical Logic, was mo tivated by similar considerations: work in modal logic (includ ing tense, deontic, and epistemic logic), intensional logics, non declaratives, presuppositions, and many other topics. In this sort of research, sin.ce the main point is to devise new formalisms, the technical development tends to be rather shallow in comparison with mathematical logic, though it is sel dom absent: theorems need to be proved in order to justify the formalisms, and sometimes these are nontrivial. On the other hand, much effort has to go into motivating a logical innovation.
Extending over a period of 30 years, this is a collection of papers written by John McCarthy on artificial intelligence. They range from informal surveys written for a general audience to technical discussions of challenging research problems that should be of interest to specialists.
Is `artificial intelligence' a contradiction in terms? Could computers (in principle) model every aspect of the mind, including logic, language, and emotion? What of the more brain-like, connectionist computers: could they really understand, even if digital computers cannot? This collection of classic and contemporary readings (which includes an editor's introduction and an up-to-date reading list) provides a clearly signposted pathway into hotly disputed philosophical issues at the heart of artificial intelligence.
cians concerned with using logical tools in philosophy have been keenly aware of the limitations that arise from the original con centration of symbolic logic on the idiom of mathematics, and many of them have worked to create extensions of the received logical theories that would make them more generally applicable in philosophy. Carnap's Testability and Meaning, published in 1936 and 1937, was a good early example of this sort of research, motivated by the inadequacy of first-order formalizations of dis 'This sugar cube is soluble in water'. positional sentences like And in fact there is a continuous history of work on this topic, extending from Carnap's paper to Shoham's contribution to the present volume . . Much of the work in philosophical logic, and much of what has appeared in The Journal of Philosophical Logic, was mo tivated by similar considerations: work in modal logic (includ ing tense, deontic, and epistemic logic), intensional logics, non declaratives, presuppositions, and many other topics. In this sort of research, sin.ce the main point is to devise new formalisms, the technical development tends to be rather shallow in comparison with mathematical logic, though it is sel dom absent: theorems need to be proved in order to justify the formalisms, and sometimes these are nontrivial. On the other hand, much effort has to go into motivating a logical innovation.
"Machines who think—how utterly preposterous," huff beleaguered humanists, defending their dwindling turf. "Artificial Intelligence—it's here and about to surpass our own," crow techno-visionaries, proclaiming dominion. It's so simple and obvious, each side maintains, only a fanatic could disagree. Deciding where the truth lies between these two extremes is the main purpose of John Haugeland's marvelously lucid and witty book on what artificial intelligence is all about. Although presented entirely in non-technical terms, it neither oversimplifies the science nor evades the fundamental philosophical issues. Far from ducking the really hard questions, it takes them on, one by one. Artificial intelligence, Haugeland notes, is based on a very good idea, which might well be right, and just as well might not. That idea, the idea that human thinking and machine computing are "radically the same," provides the central theme for his illuminating and provocative book about this exciting new field. After a brief but revealing digression in intellectual history, Haugeland systematically tackles such basic questions as: What is a computer really? How can a physical object "mean" anything? What are the options for computational organization? and What structures have been proposed and tried as actual scientific models for intelligence? In a concluding chapter he takes up several outstanding problems and puzzles—including intelligence in action, imagery, feelings and personality—and their enigmatic prospects for solution.
"Philosophical Logic is a clear and concise critical survey of nonclassical logic, written by one of the world's leading authorities on the subject. After giving an overview of classical logic, John Burgess introduces five central branches of nonclassical logic (temporal, modal, conditional, relevantistic, and intuitionistic), focusing on the sometimes problematic relationship between formal apparatus and intuitive motivation. The book provides a thorough treatment of conditional logic, unifying probabilistic and model-theoretic approaches. It underscores the variety of approaches that have been taken to relevantistic and related logics, and stresses the problem of connecting formal systems to the motivating ideas behind intuitionistic mathematics. Requiring minimal background and arranged to make the more technical material optional, Philosophical Logic offers a choice between an overview and in-depth study, and it balances the philosophical and technical aspects of the subject."--Page 4 de la couverture.
A broad introduction to the subject; many exercises with full solutions are provided.
Could a computer have a mind? What kind of machine would this be? Exactly what do we mean by 'mind' anyway?The notion of the 'intelligent' machine, whilst continuing to feature in numerous entertaining and frightening fictions, has also been the focus of a serious and dedicated research tradition. Reflecting on these fictions, and on the research tradition that pursues 'Artificial Intelligence', raises a number of vexing philosophical issues. Minds and Computers introduces readers to these issues by offering an engaging, coherent, and highly approachable interdisciplinary introduction to the Philosophy of Artificial Intelligence.Readers are presented with introductory material from each of the disciplines which constitute Cognitive Science: Philosophy, Neuroscience, Psychology, Computer Science, and Linguistics. Throughout, readers are encouraged to consider the implications of this disparate and wide-ranging material for the possibility of developing machines with minds. And they can expect to de
The use of mathematical logic as a formalism for artificial intelligence was recognized by John McCarthy in 1959 in his paper on Programs with Common Sense. In a series of papers in the 1960's he expanded upon these ideas and continues to do so to this date. It is now 41 years since the idea of using a formal mechanism for AI arose. It is therefore appropriate to consider some of the research, applications and implementations that have resulted from this idea. In early 1995 John McCarthy suggested to me that we have a workshop on Logic-Based Artificial Intelligence (LBAI). In June 1999, the Workshop on Logic-Based Artificial Intelligence was held as a consequence of McCarthy's suggestion. The workshop came about with the support of Ephraim Glinert of the National Science Foundation (IIS-9S2013S), the American Association for Artificial Intelligence who provided support for graduate students to attend, and Joseph JaJa, Director of the University of Maryland Institute for Advanced Computer Studies who provided both manpower and financial support, and the Department of Computer Science. We are grateful for their support. This book consists of refereed papers based on presentations made at the Workshop. Not all of the Workshop participants were able to contribute papers for the book. The common theme of papers at the workshop and in this book is the use of logic as a formalism to solve problems in AI.
such questions for centuries (unrestricted by the capabilities of any hard ware). The principles governing the interaction of several processes, for example, are abstract an similar to principles governing the cooperation of two large organisation. A detailed rule based effective but rigid bureaucracy is very much similar to a complex computer program handling and manipulating data. My guess is that the principles underlying one are very much the same as those underlying the other. I believe the day is not far away in the future when the computer scientist will wake up one morning with the realisation that he is actually a kind of formal philosopher! The projected number of volumes for this Handbook is about 18. The subject has evolved and its areas have become interrelated to such an extent that it no longer makes sense to dedicate volumes to topics. However, the volumes do follow some natural groupings of chapters. I would like to thank our authors are readers for their contributions and their commitment in making this Handbook a success. Thanks also to our publication administrator Mrs J. Spurr for her usual dedication and excellence and to Kluwer Academic Publishers for their continuing support for the Handbook.