Download Free Philosophical Introduction To Probability Book in PDF and EPUB Free Download. You can read online Philosophical Introduction To Probability and write the review.

Not limited to merely mathematics, probability has a rich and controversial philosophical aspect. A Philosophical Introduction to Probability showcases lesser-known philosophical notions of probability and explores the debate over their interpretations. Galavotti traces the history of probability and its mathematical properties and then discusses various philosophical positions on probability, from the Pierre Simon de Laplace's “classical” interpretation of probability to the logical interpretation proposed by John Maynard Keynes. This book is a valuable resource for students in philosophy and mathematics and all readers interested in notions of probability.
This work presents the basic concepts of probability to philosophy students who are new to this area of the subject.
First published in 1982, Philosophical Foundations of Probability Theory starts with the uses we make of the concept in everyday life and then examines the rival theories that seek to account for these applications. It offers a critical exposition of the major philosophical theories of probability, with special attention given to the metaphysical and epistemological assumptions and implications of each. The Classical Theory suggests probability is simply the ratio of favorable cases to all equi-possible cases: it is this theory that is relied on by gamblers and by most non-specialists. The A Priori Theory, on the other hand, describes probability as a logical relation between statements based on evidence. The Relative Frequency theories locate it not in logic but among empirical rates of occurrence in the real world, while the Subjectivist Theory identifies probability with the degree of a person’s belief in a proposition. Each of these types of theory is examined in turn, and the treatment is unified by the use of running examples and parallel analyses of each theory. The final chapter includes a summary and the author’s conclusions. This book is an essential read for scholars and researchers of Philosophy.
The Twentieth Century has seen a dramatic rise in the use of probability and statistics in almost all fields of research. This has stimulated many new philosophical ideas on probability. Philosophical Theories of Probability is the first book to present a clear, comprehensive and systematic account of these various theories and to explain how they relate to one another. Gillies also offers a distinctive version of the propensity theory of probability, and the intersubjective interpretation, which develops the subjective theory.
An introductory 2001 textbook on probability and induction written by a foremost philosopher of science.
Probability is increasingly important for our understanding of the world. What is probability? How do we model it, and how do we use it? Timothy Childers presents a lively introduction to the foundations of probability and to philosophical issues it raises. He keeps technicalities to a minimum, and assumes no prior knowledge of the subject. He explains the main interpretations of probability-frequentist, propensity, classical, Bayesian, and objective Bayesian-and uses stimulating examples to bring the subject to life. All students of philosophy will benefit from an understanding of probability, and this is the book to provide it.
This book is designed to explain the technical ideas that are taken for granted in much contemporary philosophical writing. Notions like 'denumerability', 'modal scope distinction', 'Bayesian conditionalization', and 'logical completeness' are usually only elucidated deep within difficult specialist texts. By offering simple explanations that by-pass much irrelevant and boring detail, Philosophical Devices is able to cover a wealth of material that is normally only available to specialists. The book contains four sections, each of three chapters. The first section is about sets and numbers, starting with the membership relation and ending with the generalized continuum hypothesis. The second is about analyticity, a prioricity, and necessity. The third is about probability, outlining the difference between objective and subjective probability and exploring aspects of conditionalization and correlation. The fourth deals with metalogic, focusing on the contrast between syntax and semantics, and finishing with a sketch of Gödel's theorem. Philosophical Devices will be useful for university students who have got past the foothills of philosophy and are starting to read more widely, but it does not assume any prior expertise. All the issues discussed are intrinsically interesting, and often downright fascinating. It can be read with pleasure and profit by anybody who is curious about the technical infrastructure of contemporary philosophy.
It is a commonplace that scientific inquiry makes extensive use of probabilities, many of which seem to be objective chances, describing features of reality that are independent of our minds. Such chances appear to have a number of paradoxical or puzzling features: they appear to be mind-independent facts, but they are intimately connected with rational psychology; they display a temporal asymmetry, but they are supposed to be grounded in physical laws that are time-symmetric; and chances are used to explain and predict frequencies of events, although they cannot be reduced to those frequencies. This book offers an accessible and non-technical introduction to these and other puzzles. Toby Handfield engages with traditional metaphysics and philosophy of science, drawing upon recent work in the foundations of quantum mechanics and thermodynamics to provide a novel account of objective probability that is empirically informed without requiring specialist scientific knowledge.
Alan Hajek, The Australian National University, Australia.
Bruno de Finetti (1906–1985) is the founder of the subjective interpretation of probability, together with the British philosopher Frank Plumpton Ramsey. His related notion of “exchangeability” revolutionized the statistical methodology. This book (based on a course held in 1979) explains in a language accessible also to non-mathematicians the fundamental tenets and implications of subjectivism, according to which the probability of any well specified fact F refers to the degree of belief actually held by someone, on the ground of her whole knowledge, on the truth of the assertion that F obtains.