Download Free Philosophical Approaches To The Foundations Of Logic And Mathematics Book in PDF and EPUB Free Download. You can read online Philosophical Approaches To The Foundations Of Logic And Mathematics and write the review.

Philosophical Approaches to the Foundations of Logic and Mathematics consists of eleven articles addressing various aspects of the "roots" of logic and mathematics, their basic concepts and the mechanisms that work in the practice of their use.
This book was written to serve as an introduction to logic, with in each chapter – if applicable – special emphasis on the interplay between logic and philosophy, mathematics, language and (theoretical) computer science. The reader will not only be provided with an introduction to classical logic, but to philosophical (modal, epistemic, deontic, temporal) and intuitionistic logic as well. The first chapter is an easy to read non-technical Introduction to the topics in the book. The next chapters are consecutively about Propositional Logic, Sets (finite and infinite), Predicate Logic, Arithmetic and Gödel’s Incompleteness Theorems, Modal Logic, Philosophy of Language, Intuitionism and Intuitionistic Logic, Applications (Prolog; Relational Databases and SQL; Social Choice Theory, in particular Majority Judgment) and finally, Fallacies and Unfair Discussion Methods. Throughout the text, the author provides some impressions of the historical development of logic: Stoic and Aristotelian logic, logic in the Middle Ages and Frege's Begriffsschrift, together with the works of George Boole (1815-1864) and August De Morgan (1806-1871), the origin of modern logic. Since "if ..., then ..." can be considered to be the heart of logic, throughout this book much attention is paid to conditionals: material, strict and relevant implication, entailment, counterfactuals and conversational implicature are treated and many references for further reading are given. Each chapter is concluded with answers to the exercises. Philosophical and Mathematical Logic is a very recent book (2018), but with every aspect of a classic. What a wonderful book! Work written with all the necessary rigor, with immense depth, but without giving up clarity and good taste. Philosophy and mathematics go hand in hand with the most diverse themes of logic. An introductory text, but not only that. It goes much further. It's worth diving into the pages of this book, dear reader! Paulo Sérgio Argolo
This volume honours the life and work of Solomon Feferman, one of the most prominent mathematical logicians of the latter half of the 20th century. In the collection of essays presented here, researchers examine Feferman’s work on mathematical as well as specific methodological and philosophical issues that tie into mathematics. Feferman’s work was largely based in mathematical logic (namely model theory, set theory, proof theory and computability theory), but also branched out into methodological and philosophical issues, making it well known beyond the borders of the mathematics community. With regard to methodological issues, Feferman supported concrete projects. On the one hand, these projects calibrate the proof theoretic strength of subsystems of analysis and set theory and provide ways of overcoming the limitations imposed by Gödel’s incompleteness theorems through appropriate conceptual expansions. On the other, they seek to identify novel axiomatic foundations for mathematical practice, truth theories, and category theory. In his philosophical research, Feferman explored questions such as “What is logic?” and proposed particular positions regarding the foundations of mathematics including, for example, his “conceptual structuralism.” The contributing authors of the volume examine all of the above issues. Their papers are accompanied by an autobiography presented by Feferman that reflects on the evolution and intellectual contexts of his work. The contributing authors critically examine Feferman’s work and, in part, actively expand on his concrete mathematical projects. The volume illuminates Feferman’s distinctive work and, in the process, provides an enlightening perspective on the foundations of mathematics and logic.
Covers the state of the art in the philosophy of maths and logic, giving the reader an overview of the major problems, positions, and battle lines. The chapters in this book contain both exposition and criticism as well as substantial development of their own positions. It also includes a bibliography.
Provides an accessible mathematical and philosophical account of Quine's set theory, New Foundations.
Presents a detailed and critical examination of the available conceptions of set and proposes a novel version.
The philosophy of mathematics is an exciting subject. Philosophy of Mathematics: Classic and Contemporary Studies explores the foundations of mathematical thought. The aim of this book is to encourage young mathematicians to think about the philosophical issues behind fundamental concepts and about different views on mathematical objects and mathematical knowledge. With this new approach, the author rekindles an interest in philosophical subjects surrounding the foundations of mathematics. He offers the mathematical motivations behind the topics under debate. He introduces various philosophical positions ranging from the classic views to more contemporary ones, including subjects which are more engaged with mathematical logic. Most books on philosophy of mathematics have little to no focus on the effects of philosophical views on mathematical practice, and no concern on giving crucial mathematical results and their philosophical relevance, consequences, reasons, etc. This book fills this gap. The book can be used as a textbook for a one-semester or even one-year course on philosophy of mathematics. "Other textbooks on the philosophy of mathematics are aimed at philosophers. This book is aimed at mathematicians. Since the author is a mathematician, it is a valuable addition to the literature." - Mark Balaguer, California State University, Los Angeles "There are not many such texts available for mathematics students. I applaud efforts to foster the dialogue between mathematics and philosophy." - Michele Friend, George Washington University and CNRS, Lille, France
L.E.J. Brouwer: Collected Works, Volume 1: Philosophy and Foundations of Mathematics focuses on the principles, operations, and approaches promoted by Brouwer in studying the philosophy and foundations of mathematics. The publication first ponders on the construction of mathematics. Topics include arithmetic of integers, negative numbers, measurable continuum, irrational numbers, Cartesian geometry, similarity group, characterization of the linear system of the Cartesian or Euclidean and hyperbolic space, and non-Archimedean uniform groups on the one-dimensional continuum. The book then examines mathematics and experience and mathematics and logic. Topics include denumerably unfinished sets, continuum problem, logic of relations, consistency proofs for formal systems independent of their interpretation, infinite numbers, and problems of space and time. The text is a valuable reference for students, mathematicians, and researchers interested in the contributions of Brouwer in the studies on the philosophy and foundations of mathematics.
Logic for Philosophy is an introduction to logic for students of contemporary philosophy. It is suitable both for advanced undergraduates and for beginning graduate students in philosophy. It covers (i) basic approaches to logic, including proof theory and especially model theory, (ii) extensions of standard logic that are important in philosophy, and (iii) some elementary philosophy of logic. It emphasizes breadth rather than depth. For example, it discusses modal logic and counterfactuals, but does not prove the central metalogical results for predicate logic (completeness, undecidability, etc.) Its goal is to introduce students to the logic they need to know in order to read contemporary philosophical work. It is very user-friendly for students without an extensive background in mathematics. In short, this book gives you the understanding of logic that you need to do philosophy.