Download Free Phenomenology Studies In Dark Matter And Cosmology Book in PDF and EPUB Free Download. You can read online Phenomenology Studies In Dark Matter And Cosmology and write the review.

This books aims at giving an overview over theoretical and phenomenological aspects of particle astrophysics and particle cosmology. To be of interest for both students and researchers in neighboring fields of physics, it keeps a balance between well established foundations that will not significantly change in the future and a more in-depth treatment of selected subfields in which significant new developments have been taking place recently. These include high energy particle astrophysics, such as cosmic high energy neutrinos, the interplay between detection techniques of dark matter in the laboratory and in high energy cosmic radiation, axion-like particles, and relics of the early Universe such as primordial magnetic fields and gravitational waves. It also contains exercises and thus will be suitable for both introductory and advanced courses in astroparticle physics.
Dark matter is a fundamental component of the standard cosmological model, but in spite of four decades of increasingly sensitive searches, no-one has yet detected a single dark-matter particle in the laboratory. An alternative cosmological paradigm exists: MOND (Modified Newtonian Dynamics). Observations explained in the standard model by postulating dark matter are described in MOND by proposing a modification of Newton's laws of motion. Both MOND and the standard model have had successes and failures – but only MOND has repeatedly predicted observational facts in advance of their discovery. In this volume, David Merritt outlines why such predictions are considered by many philosophers of science to be the 'gold standard' when it comes to judging a theory's validity. In a world where the standard model receives most attention, the author applies criteria from the philosophy of science to assess, in a systematic way, the viability of this alternative cosmological paradigm.
Supersymmetry or SUSY, one of the most beautiful recent ideas of physics, predicts sparticles existing as superpartners of particles. This book gives a theoretical and phenomenological account of sparticles. Starting from a basic level, it provides a comprehensive, pedagogical and user-friendly treatment of the subject of four-dimensional N=1 supersymmetry as well as its observational aspects in high energy physics and cosmology. Part One of the book introduces the requisite formal theory, preceded by a discussion of the naturalness problem. Part Two describes the supersymmetrization of the Standard Model of particle interactions as well as the origin of soft supersymmetry breaking and how it can be mediated from higher energies. Search strategies for sparticles, supersymmetric Higgs bosons, nonminimal scenarios and cosmological implications are some of the other topics covered. Novel features of the book include a dictionary between two-component and four-component spinor notation, a step-by-step derivation of the nonrenormalization theorem, an extended discussion of supersymmetric renormalization group evolution, detailed analyses of minimal and nonminimal models with gravity (including anomaly) mediated and gauge mediated supersymmetry breaking as well as elaborate self-contained presentations of collider signals of sparticles plus supersymmetric Higgs bosons and of supersymmetric cosmology. Appendices list all Feynman rules for the vertices of the Minimal Supersymmetric Standard Model.
Describes the dark matter problem in particle physics, astrophysics and cosmology for graduate students and researchers.
A detailed overview of the physics of high-energy colliders emphasising the role of QCD.
In the field of particle and astrophysics, one of the major unresolved problems is to understand the nature and properties of dark matter, which constitutes almost 80% of the matter content of the universe. This book gives a pedagogical introduction to the field of dark matter in general, and in particular to the model building perspective. Starting from the evidence and need for dark matter, it goes into the deeper understanding of how to accommodate a dark matter candidate in a particle physics model. This book focuses on teaching the basic tools for model building of dark matter, starting from the easiest to gradually the difficult one. Although there are plenty of dark matter models available in the literature, this book concentrates on the important ones. This book aims to motivate the reader to propose a new dark matter model complying with all observational constraints.
This book addresses foundational questions raised by observational and theoretical progress in modern cosmology. As the foundational volume of an emerging academic discipline, experts from relevant fields lay out the fundamental problems of contemporary cosmology and explore the routes toward finding possible solutions, for a broad academic audience.
This Oxford Handbook provides an overview of many of the topics that currently engage philosophers of physics. It surveys new issues and the problems that have become a focus of attention in recent years. It also provides up-to-date discussions of the still very important problems that dominated the field in the past. In the late 20th Century, the philosophy of physics was largely focused on orthodox Quantum Mechanics and Relativity Theory. The measurement problem, the question of the possibility of hidden variables, and the nature of quantum locality dominated the literature on the quantum mechanics, whereas questions about relationalism vs. substantivalism, and issues about underdetermination of theories dominated the literature on spacetime. These issues still receive considerable attention from philosophers, but many have shifted their attentions to other questions related to quantum mechanics and to spacetime theories. Quantum field theory has become a major focus, particularly from the point of view of algebraic foundations. Concurrent with these trends, there has been a focus on understanding gauge invariance and symmetries. The philosophy of physics has evolved even further in recent years with attention being paid to theories that, for the most part, were largely ignored in the past. For example, the relationship between thermodynamics and statistical mechanics—-once thought to be a paradigm instance of unproblematic theory reduction—-is now a hotly debated topic. The implicit, and sometimes explicit, reductionist methodology of both philosophers and physicists has been severely criticized and attention has now turned to the explanatory and descriptive roles of "non-fundamental,'' phenomenological theories. This shift of attention includes "old'' theories such as classical mechanics, once deemed to be of little philosophical interest. Furthermore, some philosophers have become more interested in "less fundamental'' contemporary physics such as condensed matter theory. Questions abound with implications for the nature of models, idealizations, and explanation in physics. This Handbook showcases all these aspects of this complex and dynamic discipline.
This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.