Download Free Phenomenology And Mathematics Book in PDF and EPUB Free Download. You can read online Phenomenology And Mathematics and write the review.

In this 2005 book, logic, mathematical knowledge and objects are explored alongside reason and intuition in the exact sciences.
During Edmund Husserl’s lifetime, modern logic and mathematics rapidly developed toward their current outlook and Husserl’s writings can be fruitfully compared and contrasted with both 19th century figures (Boole, Schröder, Weierstrass) as well as the 20th century characters (Heyting, Zermelo, Gödel). Besides the more historical studies, the internal ones on Husserl alone and the external ones attempting to clarify his role in the more general context of the developing mathematics and logic, Husserl’s phenomenology offers also a systematically rich but little researched area of investigation. This volume aims to establish the starting point for the development, evaluation and appraisal of the phenomenology of mathematics. It gathers the contributions of the main scholars of this emerging field into one publication for the first time. Combining both historical and systematic studies from various angles, the volume charts answers to the question "What kind of philosophy of mathematics is phenomenology?"
The launch ofa new book series is always a challenging eventn ot only for the Editorial Board and the Publisher, but also, and more particularly, for the first author. Both the Editorial Board and the Publisher are delightedt hat the first author in this series isw ell able to meet the challenge. Professor Freudenthal needs no introduction toanyone in the Mathematics Education field and it is particularly fitting that his book should be the first in this new series because it was in 1968 that he, and Reidel, produced the first issue oft he journal Edu cational Studies in Mathematics. Breakingfresh ground is therefore nothing new to Professor Freudenthal and this book illustrates well his pleasure at such a task. To be strictly correct the ‘ground’ which he has broken here is not new, but aswith Mathematics as an Educational Task and Weeding and Sowing, it is rather the novelty oft he manner in which he has carried out his analysis which provides us with so many fresh perspectives. It is our intention that this new book series should provide those who work int he emerging discipline of mathematicseducation with an essential resource, and at a time of considerable concern about the whole mathematics cu rriculum this book represents just such resource. ALAN J. BISHOP Managing Editor vii A LOOK BACKWARD AND A LOOK FORWARD Men die, systems last.
Husserl and Mathematics explains the development of Husserl's phenomenological method in the context of his engagement in modern mathematics and its foundations. Drawing on his correspondence and other written sources, Mirja Hartimo details Husserl's knowledge of a wide range of perspectives on the foundations of mathematics, including those of Hilbert, Brouwer and Weyl, as well as his awareness of the new developments in the subject during the 1930s. Hartimo examines how Husserl's philosophical views responded to these changes, and offers a pluralistic and open-ended picture of Husserl's phenomenology of mathematics. Her study shows Husserl's phenomenology to be a method capable of both shedding light on and internally criticizing scientific practices and concepts.
This Element explores the relationship between phenomenology and mathematics. Its focus is the mathematical thought of Edmund Husserl, founder of phenomenology, but other phenomenologists and phenomenologically-oriented mathematicians, including Weyl, Becker, Gödel, and Rota, are also discussed. After outlining the basic notions of Husserl's phenomenology, the author traces Husserl's journey from his early mathematical studies. Phenomenology's core concepts, such as intention and intuition, each contributed to the emergence of a phenomenological approach to mathematics. This Element examines the phenomenological conceptions of natural number, the continuum, geometry, formal systems, and the applicability of mathematics. It also situates the phenomenological approach in relation to other schools in the philosophy of mathematics-logicism, formalism, intuitionism, Platonism, the French epistemological school, and the philosophy of mathematical practice.
This volume is a window on a period of rich and illuminating philosophical activity that has been rendered generally inaccessible by the supposed "revolution" attributed to "Analytic Philosophy" so-called. Careful exposition and critique is given to every serious alternative account of number and number relations available at the time.
Burt C. Hopkins presents the first in-depth study of the work of Edmund Husserl and Jacob Klein on the philosophical foundations of the logic of modern symbolic mathematics. Accounts of the philosophical origins of formalized concepts—especially mathematical concepts and the process of mathematical abstraction that generates them—have been paramount to the development of phenomenology. Both Husserl and Klein independently concluded that it is impossible to separate the historical origin of the thought that generates the basic concepts of mathematics from their philosophical meanings. Hopkins explores how Husserl and Klein arrived at their conclusion and its philosophical implications for the modern project of formalizing all knowledge.
Development of research connected with artificial intelligence and the cognitive sciences obliges us to confront further components of the traditional problem of form. Contributors analyze the concept of form from the perspective of fields such as ontology, language, and mathematics, and look at form in its different aspects according to a more modern theory of knowledge. Subjects include experimental phenomenology, a theory of figural form, form metaphysics, and forms in algebras. Of interest to systematic philosophers, philosophers of language, psychologists, and linguists. Annotation copyrighted by Book News, Inc., Portland, OR
Richard Tieszen presents an analysis, development, and defense of a number of central ideas in Kurt Gödel's writings on the philosophy and foundations of mathematics and logic. Tieszen structures the argument around Gödel's three philosophical heroes - Plato, Leibniz, and Husserl - and his engagement with Kant, and supplements close readings of Gödel's texts on foundations with materials from Gödel's Nachlass and from Hao Wang's discussions with Gödel. As well as providing discussions of Gödel's views on the philosophical significance of his technical results on completeness, incompleteness, undecidability, consistency proofs, speed-up theorems, and independence proofs, Tieszen furnishes a detailed analysis of Gödel's critique of Hilbert and Carnap, and of his subsequent turn to Husserl's transcendental philosophy in 1959. On this basis, a new type of platonic rationalism that requires rational intuition, called 'constituted platonism', is developed and defended. Tieszen shows how constituted platonism addresses the problem of the objectivity of mathematics and of the knowledge of abstract mathematical objects. Finally, he considers the implications of this position for the claim that human minds ('monads') are machines, and discusses the issues of pragmatic holism and rationalism.
"Intuition" has perhaps been the least understood and the most abused term in philosophy. It is often the term used when one has no plausible explanation for the source of a given belief or opinion. According to some sceptics, it is understood only in terms of what it is not, and it is not any of the better understood means for acquiring knowledge. In mathematics the term has also unfortunately been used in this way. Thus, intuition is sometimes portrayed as if it were the Third Eye, something only mathematical "mystics", like Ramanujan, possess. In mathematics the notion has also been used in a host of other senses: by "intuitive" one might mean informal, or non-rigourous, or visual, or holistic, or incomplete, or perhaps even convincing in spite of lack of proof. My aim in this book is to sweep all of this aside, to argue that there is a perfectly coherent, philosophically respectable notion of mathematical intuition according to which intuition is a condition necessary for mathemati cal knowledge. I shall argue that mathematical intuition is not any special or mysterious kind of faculty, and that it is possible to make progress in the philosophical analysis of this notion. This kind of undertaking has a precedent in the philosophy of Kant. While I shall be mostly developing ideas about intuition due to Edmund Husser! there will be a kind of Kantian argument underlying the entire book.