Download Free Phenomenological Aspects Of Superstring Theories Past 97 Book in PDF and EPUB Free Download. You can read online Phenomenological Aspects Of Superstring Theories Past 97 and write the review.

Twenty-five years ago, Michael Green, John Schwarz, and Edward Witten wrote two volumes on string theory. Published during a period of rapid progress in this subject, these volumes were highly influential for a generation of students and researchers. Despite the immense progress that has been made in the field since then, the systematic exposition of the foundations of superstring theory presented in these volumes is just as relevant today as when first published. Volume 2 is concerned with the evaluation of one-loop amplitudes, the study of anomalies and phenomenology. It examines the low energy effective field theory analysis of anomalies, the emergence of the gauge groups E8 x E8 and SO(32) and the four-dimensional physics that arises by compactification of six extra dimensions. Featuring a new Preface setting the work in context in light of recent advances, this book is invaluable for graduate students and researchers in high energy physics and astrophysics, as well as mathematicians.
This book is devoted to the broad subject of flavor physics, embracing the question of what distinguishes one type of elementary particles from another. The articles range from the forefront of formal theory (treating the physics of extra dimensions) to details of particle detectors. Although special emphasis is placed on the physics of kaons, charmed and beauty particles, top quarks, and neutrinos, the articles also dealing with electroweak physics, quantum chromodynamics, supersymmetry, and dynamical electroweak symmetry breaking. Violations of fundamental symmetries such as time reversal invariance are discussed in the context of neutral kaons, beauty particles, electric dipole moments, and parity violation in atoms. The physics of the Cabibbo-Kobayashi-Maskawa matrix and of quark masses are described in some detail, both from the standpoint of present and future experimental knowledge and from a more fundamental viewpoint, where physicists are still searching for the correct theory.
This book is devoted to the broad subject of flavor physics, embracing the question of what distinguishes one type of elementary particles from another. The articles range from the forefront of formal theory (treating the physics of extra dimensions) to details of particle detectors. Although special emphasis is placed on the physics of kaons, charmed and beauty particles, top quarks, and neutrinos, the articles also dealing with electroweak physics, quantum chromodynamics, supersymmetry, and dynamical electroweak symmetry breaking. Violations of fundamental symmetries such as time reversal invariance are discussed in the context of neutral kaons, beauty particles, electric dipole moments, and parity violation in atoms. The physics of the CabibboOCoKobayashiOCoMaskawa matrix and of quark masses are described in some detail, both from the standpoint of present and future experimental knowledge and from a more fundamental viewpoint, where physicists are still searching for the correct theory. Contents: The Electroweak Theory (C Quigg); CP Violation (L Wolfenstein); Precision Electroweak Physics (Y-K Kim); Kaon and Charm Physics: Theory (G Buchalla); Kaon Physics: Experiments (T Barker); The Status of Mixing in the Charm Sector (J P Cumalat); Basics of QCD Perturbation Theory (D E Soper); Lattice QCD and the CKM Matrix (T DeGrand); The Strong CP Problem (M Dine); A Bibliography of Atomic Parity Violation and Electric Dipole Moment Experiments (C E Wieman); The CKM Matrix and the Heavy Quark Expansion (A F Falk); CP Violation in B Decays (J L Rosner); Lectures on the Theory of Nonleptonic B Decays (M Neubert); Asymmetrical e Collisions (A Roodman); Pathological Science (S Stone); Top Physics (E H Simmons); Neutrino Mass, Mixing, and Oscillation (B Kayser); Flavor in Supersymmetry (H Murayama); Technicolor and Compositeness (R S Chivukula); Models of Fermion Masses (G G Ross); Physics of Extra Dimensions (J D Lykken). Readership: Graduate students, postdoctoral fellows and senior researchers in high energy physics."
The remarkable recent discovery of the Higgs boson at the CERN Large Hadron Collider completed the Standard Model of particle physics and has paved the way for understanding the physics which may lie beyond it. String/M theory has emerged as a broad framework for describing a plethora of diverse physical systems, which includes condensed matter systems, gravitational systems as well as elementary particle physics interactions. If string/M theory is to be considered as a candidate theory of Nature, it must contain an effectively four-dimensional universe among its solutions that is indistinguishable from our own. In these solutions, the extra dimensions of string/M theory are “compactified” on tiny scales which are often comparable to the Planck length. String phenomenology is the branch of string/M theory that studies such solutions, relates their properties to data, and aims to answer many of the outstanding questions of particle physics beyond the Standard Model.This book contains perspectives on string phenomenology from some of the leading experts in the field. Contributions will range from pedagogical general overviews and perspectives to more technical reviews. We hope that the reader will get a sense of the significant progress that has been made in the field in recent years (e.g. in the topic of moduli stabilization) as well as the topics currently being researched, outstanding problems and some perspectives for the future.
This book describes the basic concepts of supersymmetric theories. It is aimed at theorists, experimentalists and cosmologists interested in supersymmetry, and its content is correspondingly divided into three distinct tracks of study. The topics covered include a discussion of the motivation for supersymmetry in fundamental physics, a description of the minimal supersymmetric model as well as models of grand unification and string models, a presentation of the main scenarios for supersymmetry breaking, including the concepts and results of dynamical breaking. On the astrophysics/cosmology side, the book includes discussions of supersymmetric dark matter candidates, inflation, dark energy, and the cosmological constant problem. Some very basic knowledge of quantum field theory is needed and extensive appendices (in particular an introduction to the Standard Model of fundamental interactions) allow the reader to refresh and complete their notions.