Download Free Phenomenological Analysis Of Heterotic Strings Non Abelian Constructions And Landscape Studies Book in PDF and EPUB Free Download. You can read online Phenomenological Analysis Of Heterotic Strings Non Abelian Constructions And Landscape Studies and write the review.

String theory offers the unique promise of unifying all the known forces innature. However, the internal consistency of the theory requires thatspacetimehave more than four dimensions. As a result, the extra dimensions must becompactified in some manner and how this compactification takes placeis critical for determining the low-energy physical predictions of thetheory. In this thesis we examine two distinct consequences of this fact. First, almost all of the prior research in string model-building hasexamined the consequences of compactifying on so-called à̀belian''orbifolds. However, the most general class of compactifications, namely those onnon-abelian orbifolds, remains almost completely unexplored. This thesisfocuses on the low-energy phenomenological consequences of compactifyingstrings on non-abelian orbifolds. One of the main interests in pursuingthese theories is that they can, in principle, naturally give rise tolow-energymodels which simultaneously have N=1 supersymmetry along with scalarparticles transforming in the adjoint of the gauge group. These features, which are exceedingly difficult to achieve through abelian orbifolds, are exciting because they are the key ingredients in understanding howgrand unification can emerge from string theory. Second, the need to compactify gives rise to a huge l̀̀andscape'' of possible resulting low-energy phenomenologies. One of the goals of the landscape program in string theory is then to extract information about the space of string vacua in the form of statistical correlations between phenomenological features that are otherwise uncorrelated in field theory. Such correlations would thus represent features of string theory that hold independently of a vacuum-selection principle. In this thesis, we study statistical correlations between two features which are likely to be central to any potential description of nature at high-energy scales: gauge symmetries and spacetime supersymmetry. We analyze correlations between these two kinds of symmetry within the context of perturbative heterotic string vacua, and find a number of striking features. We find, for example, that the degree of spacetime supersymmetry is strongly correlated with the probabilities of realizing certain gauge groups, with unbroken supersymmetry at the string scale tending to favor gauge-group factors with larger rank. We also find that nearly half of the heterotic landscape is nonsupersymmetric and yet tachyon-free at tree level; indeed, less than a quarter of the tree-level heterotic landscape exhibits any supersymmetry at all at the string scale.
Can artificial intelligence learn mathematics? The question is at the heart of this original monograph bringing together theoretical physics, modern geometry, and data science. The study of Calabi–Yau manifolds lies at an exciting intersection between physics and mathematics. Recently, there has been much activity in applying machine learning to solve otherwise intractable problems, to conjecture new formulae, or to understand the underlying structure of mathematics. In this book, insights from string and quantum field theory are combined with powerful techniques from complex and algebraic geometry, then translated into algorithms with the ultimate aim of deriving new information about Calabi–Yau manifolds. While the motivation comes from mathematical physics, the techniques are purely mathematical and the theme is that of explicit calculations. The reader is guided through the theory and provided with explicit computer code in standard software such as SageMath, Python and Mathematica to gain hands-on experience in applications of artificial intelligence to geometry. Driven by data and written in an informal style, The Calabi–Yau Landscape makes cutting-edge topics in mathematical physics, geometry and machine learning readily accessible to graduate students and beyond. The overriding ambition is to introduce some modern mathematics to the physicist, some modern physics to the mathematician, and machine learning to both.
String theory is a model of fundamental physics whose building blocks are one-dimensional extended objects called strings, rather than the zero-dimensional point particles that form the basis for the standard model of particle physics. The phrase is often used as shorthand for Superstring theory, as well as related theories such as M-theory. By replacing the point-like particles with strings, an apparently consistent quantum theory of gravity emerges. Moreover, it may be possible to 'unify' the known natural forces (gravitational, electromagnetic, weak nuclear and strong nuclear) by describing them with the same set of equations. Studies of string theory have revealed that it predicts higher-dimensional objects called branes. String theory strongly suggests the existence of ten or eleven (in M-theory) space-time dimensions, as opposed to the usual four (three spatial and one temporal) used in relativity theory.
String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697.
A systematic introduction to string phenomenology, outlining how string theory is connected to the real world of particle physics.
Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.
Calabi-Yau spaces are complex spaces with a vanishing first Chern class, or equivalently, with trivial canonical bundle (canonical class). They are used to construct possibly realistic (super)string models and are thus being studied vigorously in the recent physics literature.In the main part of the Book, collected and reviewed are relevant results on (1) several major techniques of constructing such spaces and (2) computation of physically relevant quantities such as massless field spectra and their Yukawa interactions. Issues of (3) stringy corrections and (4) moduli space and its geometry are still in the stage of rapid and continuing development, whence there is more emphasis on open problems here. Also is included a preliminary discussion of the conjectured universal moduli space and related open problems. Finally, several detailed models and sample computations are included throughout the Book to exemplify the techniques and the general discussion.The Book also contains a Lexicon (28 pages) of 150 assorted terms, key-words and main results and theorems, well suited for a handy reference. Although cross-referenced with the main part of the Book, the Lexicon can also be used independently.The level of mathematics is guided and developed between that of the popular Physics Reports of Eguchi, Gilkey and Hanson and the book Superstrings (Vol. 2) by Green, Schwarz and Witten on one end and Principles of Algebraic Geometry of Griffiths and Harris on the other.This is the first systematic exposition in book form of the material on Calabi-Yau spaces, related mathematics and the physics application, otherwise scattered through research articles in journals and conference proceedings.
A unified theory embracing all physical phenomena is a major goal of theoretical physics. In the early 1980s, many physicists looked to eleven-dimensional supergravity in the hope that it might provide that elusive superunified theory. In 1984 supergravity was knocked off its pedestal by ten-dimensional superstrings, one-dimensional objects whose v