Download Free Pharmacology Of Mitochondria Book in PDF and EPUB Free Download. You can read online Pharmacology Of Mitochondria and write the review.

This is the definitive, one-stop resource on preclinical drug evaluation for potential mitochondrial toxicity, addressing the issue upfront in the drug development process. It discusses mitochondrial impairment to organs, skeletal muscle, and nervous systems and details methodologies used to assess mitochondria function. It covers both in vitro and in vivo methods for analysis and includes the latest models. This is the authoritative reference on drug-induced mitochondrial dysfunction for safety assessment professionals in the pharmaceutical industry and for pharmacologists and toxicologists in both drug and environmental health sciences.
Mitochondria are subcellular organelles evolved by the endosymbiosis of bacteria with eukaryotic cells. They are the main source of ATP in the cell and engaged in other aspects of cell metabolism and cell function, including the regulation of ion homeostasis, cell growth, redox status, and cell signaling. Due to their central role in cell life and death, mitochondria are also involved in the pathogenesis and progression of human diseases/conditions, including neurodegenerative and cardiovascular disorders, cancer, diabetes, inflammation, and aging. However, despite the increasing number of studies, precise mechanisms whereby mitochondria are involved in the regulation of basic physiological functions, as well as their role in the cell under pathophysiological conditions, remain unknown. A lack of in-depth knowledge of the regulatory mechanisms of mitochondrial metabolism and function, as well as interplay between the factors that transform the organelle from its role in pro-survival to pro-death, have hindered the development of new mitochondria-targeted pharmacological and conditional approaches for the treatment of human diseases. This book highlights the latest achievements in elucidating the role of mitochondria under physiological conditions, in various cell/animal models of human diseases, and in patients.
This interactive clinical textbook takes a system- and case-based approach in understanding mitochondrial disorders in clinical practice.
Methods in Toxicology, Volume 2: Mitochondrial Dysfunction provides a source of methods, techniques, and experimental approaches for studying the role of abnormal mitochondrial function in cell injury. The book discusses the methods for the preparation and basic functional assessment of mitochondria from liver, kidney, muscle, and brain; the methods for assessing mitochondrial dysfunction in vivo and in intact organs; and the structural aspects of mitochondrial dysfunction are addressed. The text also describes chemical detoxification and metabolism as well as specific metabolic reactions that are especially important targets or indicators of damage. The methods for measurement of alterations in fatty acid and phospholipid metabolism and for the analysis and manipulation of oxidative injury and antioxidant systems are also considered. The book further tackles additional methods on mitochondrial energetics and transport processes; approaches for assessing impaired function of mitochondria; and genetic and developmental aspects of mitochondrial disease and toxicology. The text also looks into mitochondrial DNA synthesis, covalent binding to mitochondrial DNA, DNA repair, and mitochondrial dysfunction in the context of developing individuals and cellular differentiation. Microbiologists, toxicologists, biochemists, and molecular pharmacologists will find the book invaluable.
This special book is conceived to highlight mitochondrial structural and functional integrity and how they are associated with several human diseases such as cardiovascular, cancer, renal, neurological disorder, and genetic disorders. The chapters contributed by leading mitochondrial researchers in the handbook will take us through the novel pharmacological strategies via mitochondria to understand their physiological and pathological role as well as present them as therapeutic targets.
"This volume inspires. It certainly will be much appreciated by cell biologists all over the world." Quarterly Review of Biology, March 2009 This book is the eagerly awaited second edition of the best-selling Mitochondria, a book widely acknowledged as the first modern, truly comprehensive authored work on the important, scientifically fundamental topic of the cellular organelles known as mitochondria. This new edition brings readers completely up to date on the many significant findings that have occurred in the eight years since the book was first published. As in that seminal first edition, the second edition tackles the biochemistry, genetics, and pathology of mitochondria in different organisms. The new edition provides thorough updates of all literature concerning this vital organelle, its functions, ongoing research surrounding it, and its importance vis-à-vis a broad range of issues in cellular and molecular biology. The book includes detailed descriptions of current and developing technologies around mitochondrial research and discovery, and highlights subjects that are growing, such as the use of proteomics. This book is an invaluable resource for all geneticists, biologists, and educators in life sciences. It is also of interest for advanced students in genetics and molecular biology.
The increased exposure to toxins, toxicants and novel drugs has promoted toxicology to become one of the most important areas of research with emerging innovative toxicity testing protocols, techniques, and regulation being placed. Since the bioactivation of many toxins and toxicants and its consequences on human health are not clearly known, this book offers a quick overview of cellular toxicology through the cell, drug and environmental toxicity. This book does not strive to be comprehensive but instead offers a quick overview of principle aspects of toxins and toxicants in order to familiarize the key principles of toxicology. The book is divided into three main sections,; the first one discusses the role of mitochondrial dysfunction, oxidative stress and mitochondrial drug development. The second and third sections bring light to forensic toxicology and drug poisoning followed by environmental toxicity.
This book is indispensable to researchers in fields as diverse as Molecular Biology and Biophysics. It covers the important role that mitochondria play in a variety of biochemical spheres. It analyses how mitochondria affect metabolic pathways, how they are active in the regulation of cytosolic constituents, and their role in initiating signal pathways. Also covered are the way mitochondria help to regulate apoptosis, and how they modulate cellular hypertrophy and proliferation. It gives an overview of the emergence of mitochondria as an important regulator of cell signaling, with a particular focus on their pathophysiology.
Nearly a century of scientific research has revealed that mitochondrial dysfunction is one of the most common and consistent phenotypes of cancer cells. A number of notable differences in the mitochondria of normal and cancer cells have been described. These include differences in mitochondrial metabolic activity, molecular composition of mitochondria and mtDNA sequence, as well as in alteration of nuclear genes encoding mitochondrial proteins. This book, Mitochondria and Cancer, edited by Keshav K. Singh and Leslie C. Costello, presents thorough analyses of mitochondrial dysfunction as one of the hallmarks of cancer, discusses the clinical implications of mitochondrial defects in cancer, and as unique cellular targets for novel and selective anti-cancer therapy.
Clinical Bioenergetics: From Pathophysiology to Clinical Translation provides recent developments surrounding the etiology and pathophysiology of inherited and acquired energy-delated disorders. Across 40 chapters, world leaders in bioenergetics and mitochondrial medicine discuss novel methodologies designed to identify deficiencies in cellular bioenergetics, as well as the safety and efficacy of emerging management strategies to address poor cellular bioenergetics. Topics discussed include the omics landscape of impaired mitochondrial bioenergetics, hormones, tissue bioenergetics and metabolism in humans. Disease-specific case studies, modes of analysis in clinical bioenergetics, and therapeutic opportunities for impaired bioenergetics, addressing both known treatment pathways and future directions for research, are discussed in-depth. Diseases and Disorders examined include brain injury, chronic fatigue syndrome, psychiatric disorders, pulmonary fibrosis, neurodegenerative disorders, heart failure, chronic kidney disease, obesity, and insulin resistance, among others. - Provides a thorough discussion of foundational aspects of bioenergetics and disease, modes of analysis, and treatments for impaired bioenergetics - Discusses the role of bioenergetics and treatment pathways in brain injury, chronic fatigue syndrome, psychiatric disorders, pulmonary fibrosis, neurodegenerative disorders, heart failure, chronic kidney disease, obesity, and insulin resistance, among other diseases and disorders - Features chapter contributions from international leaders in translational bioenergetics research and clinical practice