Download Free Pharmaceutical Nanobiotechnology For Targeted Therapy Book in PDF and EPUB Free Download. You can read online Pharmaceutical Nanobiotechnology For Targeted Therapy and write the review.

Presents nanobiotechnology in drug delivery and disease management Featuring contributions from noted experts in the field, this book highlights recent advances in the nano-based drug delivery systems. It also covers the diagnosis and role of various nanomaterials in the management of infectious diseases and non-infectious disorders, such as cancers and other malignancies and their role in future medicine. Nanobiotechnology in Diagnosis, Drug Delivery and Treatment starts by introducing how nanotechnology has revolutionized drug delivery, diagnosis, and treatments of diseases. It then focuses on the role of various nanocomposites in diagnosis, drug delivery, and treatment of diseases like cancer, Alzheimer's disease, diabetes, and many others. Next, it discusses the application of a variety of nanomaterials in the diagnosis and management of gastrointestinal tract disorders. The book explains the concept of nanotheranostics in detail and its role in effective monitoring of drug response, targeted drug delivery, enhanced drug accumulation in the target tissues, sustained as well as triggered release of drugs, and reduction in adverse effects. Other chapters cover aptamer-incorporated nanoparticle systems; magnetic nanoparticles; theranostics and vaccines; toxicological concerns of nanomaterials used in nanomedicine; and more. Provides a concise overview of state-of-the-art nanomaterials and their application like drug delivery in infectious diseases and non-infectious disorders Highlights recent advances in the nano-based drug delivery systems and role of various nanomaterials Introduces nano-based sensors which detect various pathogens Covers the use of nanodevices in diagnostics and theranostics Nanobiotechnology in Diagnosis, Drug Delivery and Treatment is an ideal book for researchers and scientists working in various disciplines such as microbiology, biotechnology, nanotechnology, pharmaceutical biotechnology, pharmacology, pharmaceutics, and nanomedicine.
The field of nanotechnology for targeted therapy initiated more than decade ago has grown fast and interest is increasing. Given the importance of the field for targeted drug and gene delivery systems, there are a large number of laboratory investigations today researching nanobiomaterials for diagnostic and therapeutic applications. Because of the ability of scientists to load nanoparticles with any agent, interest continues to grow and technology in this arena is rapidly evolving. These emerging nanobiomaterials-based medicines can overcome the disadvantages of traditional medicines by target-oriented and site-specific delivery of precise medicines (immunotherapeutic agents, chemotherapeutic agents, diagnostic agents, and so on). Pharmaceutical Nanobiotechnology for Targeted Therapy presents an updated overview of recent advancements in the field of pharmaceutical nanobiotechnology and nano-based drug and gene delivery systems. This comprehensive knowledge will allow researchers to discover innovative nanobiomaterials for targeted therapeutics. The chapters deal with various emerging nanobiomaterials for targeted therapeutic delivery systems and the writing is in a style that is easily disseminated and in a manner that can be readily adopted as sources for new and further studies. This book should be useful for researchers and professionals from academia and industry working in the field of nanotechnology, nanobiotechnology, as well as in the field of pharmaceutical nanotechnology. It should also be useful to those interested in a range of disciplines from material science, chemistry, molecular biology, polymer chemistry, and many more interdisciplinary areas.
Advances in Cancer Research, Volume 139, provides invaluable information on the exciting and fast-moving field of cancer research. Original reviews are presented on a variety of topics relating to the rapidly developing intersection between nanotechnology and cancer research, with unique sections in the new release focusing on Exosomes as a theranostic for lung cancer, Nanotechnology and cancer immunotherapy, Ultrasound imaging agents and delivery systems, Dendronized systems for the delivery of chemotherapeutics, Thermosensitive liposomes for image-guided drug delivery, Supramolecular Chemistry in Tumor Analysis and Drug Delivery, Gold nanoparticles for delivery of cancer therapeutics, and Single cell barcode microchip for cancer research and therapy. - Provides the latest information on cancer research - Offers outstanding and original reviews on a range of cancer research topics - Serves as an indispensable reference for researchers and students alike
This book is the third volume on this subject and focuses on the recent advances of nanopharmaceuticals in cancer, dental, dermal and drug delivery applications and presents their safety, toxicity and therapeutic efficacy. The book also includes the transport phenomenon of nanomaterials and important pathways for drug delivery applications. It goes on to explain the toxicity of nanoparticles to different physiological systems and methods used to assess this for different organ systems using examples of in vivo systems.
This book reviews the application of Nanobiotechnology in the development of Nanomedicine, while also discussing the latest trends and challenges in the clinical translation of Nanomedicine. Nanomedicine refers to the application of Nanotechnology to medicine and holds tremendous potential for achieving improved efficiency, bioavailability, dose response, personalized medicine and enhanced safety as compared to conventional medicines. The book first introduces readers to the basic concepts of Nanomedicine, and to technological advances in and applications of Nanotechnology in treatment, diagnosis, monitoring, and drug delivery. In turn, it reviews the current status of multi-functionalization strategies for using Nanoparticles in the targeted delivery of therapeutic agents. The book’s third and final section focuses on the regulatory and safety challenges posed by Nanomedicine, including industry and regulatory agencies’ efforts to address them.
The reader will be introduced to various aspects of the fundamentals of nanotechnology based drug delivery systems and the application of these systems for the delivery of small molecules, proteins, peptides, oligonucleotides and genes. How these systems overcome challenges offered by biological barriers to drug absorption and drug targeting will also be described.
MICROBIAL INTERACTIONS AT NANOBIOTECHNOLOGY INTERFACES This book covers a wide range of topics including synthesis of nanomaterials with specific size, shape, and properties, structure-function relationships, tailoring the surface of nanomaterials for improving the properties, interaction of nanomaterials with proteins/microorganism/eukaryotic cells, and applications in different sectors. This book also provides a strong foundation for researchers who are interested to venture into developing functionalized nanomaterials for any biological applications in their research. Practical concepts such as modelling nanomaterials, and simulating the molecular interactions with biomolecules, transcriptomic or genomic approaches, advanced imaging techniques to investigate the functionalization of nanomaterials/interaction of nanomaterials with biomolecules and microorganisms are some of the chapters that offer significant benefits to the researchers.
Nano-carriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery presents recent discoveries in research on the pharmaceutical applications of the various types of nanosystem-based drug delivery systems. As many nanosystems have reached the market over the past decade, this book proves their benefits to patients. It explores these new carriers and the advances in drug delivery they have facilitated. Reflecting the interdisciplinary nature of the subject matter, the book includes experts from different fields, and with various backgrounds and expertise. It will appeal to researchers and students from different disciplines, such as materials science, technology and various biomedical fields. Coverage includes industrial applications that bridge the gap between lab-based research and practical industrial use. The resulting work is a reference and practical source of guidance for researchers, students and scientists working in the fields of nanotechnology, materials science and technology and biomedical science.
Nanostructures for Antimicrobial Therapy discusses the pros and cons of the use of nanostructured materials in the prevention and eradication of infections, highlighting the efficient microbicidal effect of nanoparticles against antibiotic-resistant pathogens and biofilms. Conventional antibiotics are becoming ineffective towards microorganisms due to their widespread and often inappropriate use. As a result, the development of antibiotic resistance in microorganisms is increasingly being reported. New approaches are needed to confront the rising issues related to infectious diseases. The merging of biomaterials, such as chitosan, carrageenan, gelatin, poly (lactic-co-glycolic acid) with nanotechnology provides a promising platform for antimicrobial therapy as it provides a controlled way to target cells and induce the desired response without the adverse effects common to many traditional treatments. Nanoparticles represent one of the most promising therapeutic treatments to the problem caused by infectious micro-organisms resistant to traditional therapies. This volume discusses this promise in detail, and also discusses what challenges the greater use of nanoparticles might pose to medical professionals. The unique physiochemical properties of nanoparticles, combined with their growth inhibitory capacity against microbes has led to the upsurge in the research on nanoparticles as antimicrobials. The importance of bactericidal nanobiomaterials study will likely increase as development of resistant strains of bacteria against most potent antibiotics continues. - Shows how nanoantibiotics can be used to more effectively treat disease - Discusses the advantages and issues of a variety of different nanoantibiotics, enabling medics to select which best meets their needs - Provides a cogent summary of recent developments in this field, allowing readers to quickly familiarize themselves with this topic area
Nanotechnology is an interdisciplinary research field that integrates chemistry, engineering, biology, and medicine. Nanomaterials offer tremendous opportunity as well as challenges for researchers. Of course, cancer is one of the world's most common health problems, responsible for many deaths. Exploring efficient anticancer drugs could revolutionize treatment options and help manage cancer mortality. Nanomedicine plays a significant role in developing alternative and more effective treatment strategies for cancer theranostics. This book mainly focuses on the emerging trends using nanomaterials and nanocomposites as alternative anticancer material’s. The book is divided into three main topic areas: how to overcome existing traditional approaches to combat cancer, applying multiple mechanisms to target the cancer cells, and how nanomaterials can be used as effective carriers. The contents highlight recent advances in interdisciplinary research on processing, morphology, structure, and properties of nanostructured materials and their applications to combat cancer.Cancer Nanotheranostics is comprehensive in that it discusses all aspects of cancer nanotechnology. Because of the vast amount of information, it was decided to split this material into two volumes. In the first volume of Cancer Nanotheranostics, we discuss the role of different nanomaterials for cancer therapy, including lipid-based nanomaterials, protein and peptide-based nanomaterials, polymer-based nanomaterials, metal-organic nanomaterials, porphyrin-based nanomaterials, metal-based nanomaterials, silica-based nanomaterials, exosome-based nanomaterials and nano-antibodies. In the second volume, we discuss the nano-based diagnosis of cancer, nano-oncology for clinical applications, nano-immunotherapy, nano-based photothermal cancer therapy, nano-erythrosomes for cancer drug delivery, regulatory perspectives of nanomaterials, limitations of cancer nanotheranostics, the safety of nano-biomaterials for cancer nanotheranostics, multifunctional nanomaterials for targeting cancer nanotheranostics, and the role of artificial intelligence in cancer nanotheranostics.