Download Free Pharmaceutical Extrusion Technology Book in PDF and EPUB Free Download. You can read online Pharmaceutical Extrusion Technology and write the review.

Pharmaceutical Extrusion Technology is the only resource to provide in-depth descriptions and analyses of the key parameters of extruders and extrusion processes. The book highlights the applicability of melt extrusion in pharmaceutical drug development and product manufacturing, including controlled release, dissolution rate and bioavailability enhancement, and granulation technology. It brings together the technical information necessary to develop and market pharmaceutical dosage forms that meet current quality and regulatory requirements and details extruder hardware and controls, process definition and troubleshooting of single and twin screw extrusion processes, and more.
Hot-melt extrusion (HME) - melting a substance and forcing it through an orifice under controlled conditions to form a new material - is an emerging processing technology in the pharmaceutical industry for the preparation of various dosage forms and drug delivery systems, for example granules and sustained release tablets. Hot-Melt Extrusion: Pharmaceutical Applications covers the main instrumentation, operation principles and theoretical background of HME. It then focuses on HME drug delivery systems, dosage forms and clinical studies (including pharmacokinetics and bioavailability) of HME products. Finally, the book includes some recent and novel HME applications, scale -up considerations and regulatory issues. Topics covered include: principles and die design of single screw extrusion twin screw extrusion techniques and practices in the laboratory and on production scale HME developments for the pharmaceutical industry solubility parameters for prediction of drug/polymer miscibility in HME formulations the influence of plasticizers in HME applications of polymethacrylate polymers in HME HME of ethylcellulose, hypromellose, and polyethylene oxide bioadhesion properties of polymeric films produced by HME taste masking using HME clinical studies, bioavailability and pharmacokinetics of HME products injection moulding and HME processing for pharmaceutical materials laminar dispersive & distributive mixing with dissolution and applications to HME technological considerations related to scale-up of HME processes devices and implant systems by HME an FDA perspective on HME product and process understanding improved process understanding and control of an HME process with near-infrared spectroscopy Hot-Melt Extrusion: Pharmaceutical Applications is an essential multidisciplinary guide to the emerging pharmaceutical uses of this processing technology for researchers in academia and industry working in drug formulation and delivery, pharmaceutical engineering and processing, and polymers and materials science. This is the first book from our brand new series Advances in Pharmaceutical Technology. Find out more about the series here.
This volume provides readers with the basic principles and fundamentals of extrusion technology and a detailed description of the practical applications of a variety of extrusion processes, including various pharma grade extruders. In addition, the downstream production of films, pellets and tablets, for example, for oral and other delivery routes, are presented and discussed utilizing melt extrusion. This book is the first of its kind that discusses extensively the well-developed science of extrusion technology as applied to pharmaceutical drug product development and manufacturing. By covering a wide range of relevant topics, the text brings together all technical information necessary to develop and market pharmaceutical dosage forms that meet current quality and regulatory requirements. As extrusion technology continues to be refined further, usage of extruder systems and the array of applications will continue to expand, but the core technologies will remain the same.
This book serves as a formulation and processing guide during the development of pelletized dosage forms. It provides the pharmaceutical technologist with basic information about the design aspects of the relevant processing equipment.
This volume offers a comprehensive guide on the theory and practice of amorphous solid dispersions (ASD) for handling challenges associated with poorly soluble drugs. In twenty-three inclusive chapters, the book examines thermodynamics and kinetics of the amorphous state and amorphous solid dispersions, ASD technologies, excipients for stabilizing amorphous solid dispersions such as polymers, and ASD manufacturing technologies, including spray drying, hot melt extrusion, fluid bed layering and solvent-controlled micro-precipitation technology (MBP). Each technology is illustrated by specific case studies. In addition, dedicated sections cover analytical tools and technologies for characterization of amorphous solid dispersions, the prediction of long-term stability, and the development of suitable dissolution methods and regulatory aspects. The book also highlights future technologies on the horizon, such as supercritical fluid processing, mesoporous silica, KinetiSol®, and the use of non-salt-forming organic acids and amino acids for the stabilization of amorphous systems. Amorphous Solid Dispersions: Theory and Practice is a valuable reference to pharmaceutical scientists interested in developing bioavailable and therapeutically effective formulations of poorly soluble molecules in order to advance these technologies and develop better medicines for the future.
The first edition of Pharmaceutical Extrusion Technology, published in 2003, was deemed the seminal book on pharmaceutical extrusion. Now it is expanded and improved, just like the usage of extrusion has expanded, improved and evolved into an accepted manufacturing technology to continuously mix active pharmaceutical ingredients with excipients for a myriad of traditional and novel dosage forms. Pharmaceutical Extrusion Technology, Second Edition reflects how this has spawned numerous research activities, in addition to hardware and process advancements. It offers new authors, expanded chapters and contains all the extrusion related technical information necessary for the development, manufacturing, and marketing of pharmaceutical dosage forms. Key Features: Reviews how extrusion has become an accepted technology to continuously mix active pharmaceutical ingredients with excipients Focuses on equipment and process technology Explains various extrusion system configurations as a manufacturing methodology for a variety of dosage forms Presents new opportunities available only via extrusion and future trends Includes contributions of experts from the process and equipment fields
Theoretical discussions covering granulation and engineering perspectives. Covers new advances in expert systems, process modelling and bioavailability Chapters on emerging technologies in particle engineering Updated Current research and developments in granulation technologies
Extrusion is the operation of forming and shaping a molten or dough-like material by forcing it through a restriction, or die. It is applied and used in many batch and continuous processes. However, extrusion processing technology relies more on continuous process operations which use screw extruders to handle many process functions such as the transport and compression of particulate components, melting of polymers, mixing of viscous media, heat processing of polymeric and biopolymeric materials, product texturization and shaping, defibering and chemical impregnation of fibrous materials, reactive extrusion, and fractionation of solid-liquid systems. Extrusion processing technology is highly complex, and in-depth descriptions and discussions are required in order to provide a complete understanding and analysis of this area: this book aims to provide readers with these analyses and discussions. Extrusion Processing Technology: Food and Non-Food Biomaterials provides an overview of extrusion processing technology and its established and emerging industrial applications. Potency of process intensification and sustainable processing is also discussed and illustrated. The book aims to span the gap between the principles of extrusion science and the practical knowledge of operational engineers and technicians. The authors bring their research and industrial experience in extrusion processing technology to provide a comprehensive, technical yet readable volume that will appeal to readers from both academic and practical backgrounds. This book is primarily aimed at scientists and engineers engaged in industry, research, and teaching activities related to the extrusion processing of foods (especially cereals, snacks, textured and fibrated proteins, functional ingredients, and instant powders), feeds (especially aquafeeds and petfoods), bioplastics and plastics, biosourced chemicals, paper pulp, and biofuels. It will also be of interest to students of food science, food engineering, and chemical engineering. Also available Formulation Engineering of Foods Edited by J.E. Norton, P.J. Fryer and I.T. Norton ISBN 978-0-470-67290-7 Food and Industrial Bioproducts and Bioprocessing Edited by N.T. Dunford ISBN 978-0-8138-2105-4 Handbook of Food Process Design Edited by J. Ahmed and M.S. Rahman ISBN 978-1-4443-3011-3
3D printing is forecast to revolutionise the pharmaceutical sector, changing the face of medicine development, manufacture and use. Potential applications range from pre-clinical drug development and dosage form design through to the fabrication of functionalised implants and regenerative medicine. Within clinical pharmacy practice, printing technologies may finally lead to the concept of personalised medicines becoming a reality. This volume aims to be the definitive resource for anyone thinking of developing or using 3D printing technologies in the pharmaceutical sector, with a strong focus on the translation of printing technologies to a clinical setting. This text brings together leading experts to provide extensive information on an array of 3D printing techniques, reviewing the current printing technologies in the pharmaceutical manufacturing supply chain, in particular, highlighting the state-of-the-art applications in medicine and discussing modern drug product manufacture from a regulatory perspective. This book is a highly valuable resource for a range of demographics, including academic researchers and the pharmaceutical industry, providing a comprehensive inventory detailing the current and future applications of 3D printing in pharmaceuticals. Abdul W. Basit is Professor of Pharmaceutics at the UCL School of Pharmacy, University College London. Abdul’s research sits at the interface between pharmaceutical science and gastroenterology, forging links between basic science and clinical outcomes. He leads a large and multidisciplinary research group, and the goal of his work is to further the understanding of gastrointestinal physiology by fundamental research. So far, this knowledge has been translated into the design of new technologies and improved disease treatments, many of which are currently in late-stage clinical trials. He has published over 350 papers, book chapters and abstracts and delivered more than 250 invited research presentations. Abdul is also a serial entrepreneur and has filed 25 patents and founded 3 pharmaceutical companies (Kuecept, Intract Pharma, FabRx). Abdul is a frequent speaker at international conferences, serves as a consultant to many pharmaceutical companies and is on the advisory boards of scientific journals, healthcare organisations and charitable bodies. He is the European Editor of the International Journal of Pharmaceutics. Abdul was the recipient of the Young Investigator Award in Pharmaceutics and Pharmaceutical Technology from the American Association of Pharmaceutical Scientists (AAPS) and is the only non-North American scientist to receive this award. He was also the recipient of the Academy of Pharmaceutical Sciences (APS) award. Simon Gaisford holds a Chair in Pharmaceutics and is Head of the Department of Pharmaceutics at the UCL School of Pharmacy, University College London. He has published 110 papers, 8 book chapters and 4 authored books. His research is focused on novel technologies for manufacturing medicines, particularly using ink-jet printing and 3D printing, and he is an expert in the physico-chemical characterisation of compounds and formulations with thermal methods and calorimetry.
This contribution book collects reviews and original articles from eminent experts working in the interdisciplinary arena of novel drug delivery systems and their uses. From their direct and recent experience, the readers can achieve a wide vision on the new and ongoing potentialities of different drug delivery systems. Since the advent of analytical techniques and capabilities to measure particle sizes in nanometer ranges, there has been tremendous interest in the use of nanoparticles for more efficient methods of drug delivery. On the other hand, this reference discusses advances in the design, optimization, and adaptation of gene delivery systems for the treatment of cancer, cardiovascular, pulmonary, genetic, and infectious diseases, and considers assessment and review procedures involved in the development of gene-based pharmaceuticals.