Download Free Pharmaceutical And Medical Applications Of Near Infrared Spectroscopy Second Edition Book in PDF and EPUB Free Download. You can read online Pharmaceutical And Medical Applications Of Near Infrared Spectroscopy Second Edition and write the review.

Since the completion of the first edition of this book, major developments have occurred in the pharmaceutical industry that have shaped the field of near-infrared (NIR) spectroscopy. A new initiative from the U.S. Food and Drug Administration (FDA) to modernize regulations of pharmaceutical manufacturing and drug quality has helped position NIR spectroscopy as an effective tool for pharmaceutical testing. Pharmaceutical and Medical Applications of Near-Infrared Spectroscopy: Second Edition reflects these developments and brings readers an up-to-date summary of how this technique is being applied to pharmaceutical manufacturing. Topics include: The origins and principles of NIR spectroscopy, including early instrumentation, spectroscopic theory, and light-particle interaction The physics of each instrument type, the strengths and weaknesses of each, and the manufacturers that produce them The possible advantages of using NIR methods for monitoring or controlling blending, as well as practical concerns for mixing processes NIR spectroscopy as applied to traditional granulation, drug layering, and film coating of beads or granules Pharmaceutical assays, including qualitative analysis, quantitative analysis, determination of actives in tablets and capsules, and considerations for intact dosage form analysis Steps involved in the validation and acceptance of an NIR spectroscopy method, including quality assurance, qualification and verification of instruments, and the International Conference on Harmonization (ICH) guidelines Medical applications, including those related to blood glucose measurements, tissue and major organ analysis, fetal analysis, and cancer research Providing comprehensive coverage of NIR spectroscopy, from theory, mathematics, application, and mechanics of NIR analysis, the book supplies ample references to facilitate further research into this burgeoning field.
This book discusses the theory, instrumentation, validation, and implementation of near-infrared spectroscopy for pharmaceutical and medical applications. It showcases a diverse range of contemporary methods for the production, screening, and analysis of new drug products and pharmaceuticals. Presents current approaches in near-infrared spectroscop
This book discusses the theory, instrumentation, validation, and implementation of near-infrared spectroscopy for pharmaceutical and medical applications. It showcases a diverse range of contemporary methods for the production, screening, and analysis of new drug products and pharmaceuticals. Presents current approaches in near-infrared spectroscopy (NIR) to monitor and control multiple phases of the drug manufacturing process.
Recent regulations on heavy metal testing have required the pharmaceutical industry to monitor a suite of elemental impurities in pharmaceutical raw materials, drug products and dietary supplements. These new directives s are described in the new United States Pharmacopeia (USP) Chapters , , and , together with Q3D, Step 4 guidelines for elemental impurities, drafted by the ICH (International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use), a consortium of global pharmaceutical associations, including the European Pharmacopeia (Ph.Eur.), the Japanese Pharmacopeia (JP) and the USP. This book provides a complete guide to the analytical methodology, instrumental techniques and sample preparation procedures used for measuring elemental impurities in pharmaceutical and nutraceutical materials. It offers readers the tools to better understand plasma spectrochemistry to optimize detection capability for the full suite of elemental PDE (Permitted Daily Exposure) levels in the various drug delivery categories. Other relevant information covered in the book includes: The complete guide to measuring elemental impurities in pharmaceutical and nutraceutical materials. Covers heavy metals testing in the pharmaceutical industry from an historical perspective. Gives an overview of current USP Chapters and and ICH Q3D Step 4 Guidelines. Explains the purpose of validation protocols used in Chapter , including how J-values are calculated Describes fundamental principles and practical capabilities of ICP-MS and ICP-OES. Offers guidelines about the optimum strategy for risk assessment Provides tips on how best to prepare and present your data for regulatory inspection. An indispensable resource, the fundamental principles and practical benefits of ICP-OES and ICP-MS are covered in a reader-friendly format that a novice, who is carrying out elemental impurities testing in the pharmaceutical and nutraceutical communities, will find easy to understand.
Rapid, inexpensive, and easy-to-deploy, near-infrared (NIR) spectroscopy can be used to analyze samples of virtually any composition, origin, and condition. The Handbook of Near Infrared Analysis, Fourth Edition, explores the factors necessary to perform accurate and time- and cost-effective analyses across a growing spectrum of disciplines. This updated and expanded edition incorporates the latest advances in instrumentation, computerization, chemometrics applied to NIR spectroscopy, and method development in NIR spectroscopy, and underscores current trends in sample preparation, calibration transfer, process control, data analysis, instrument performance testing, and commercial NIR instrumentation. This work offers readers an unparalleled combination of theoretical foundations, cutting-edge applications, and practical experience. Additional features include the following: Explains how to perform accurate as well as time- and cost-effective analyses. Reviews software-enabled chemometric methods and other trends in data analysis. Highlights novel applications in pharmaceuticals, polymers, plastics, petrochemicals, textiles, foods and beverages, baked products, agricultural products, biomedicine, nutraceuticals, and counterfeit detection. Underscores current trends in sample preparation, calibration transfer, process control, data analysis, and multiple aspects of commercial NIR instrumentation. Offering the most complete single-source guide of its kind, the Handbook of Near Infrared Analysis, Fourth Edition, continues to offer practicing chemists and spectroscopists an unparalleled combination of theoretical foundations, cutting-edge applications, and detailed practical experience provided firsthand by more than 50 experts in the field.
This book provides knowledge of the basic theory, spectral analysis methods, chemometrics, instrumentation, and applications of near-infrared (NIR) spectroscopy—not as a handbook but rather as a sourcebook of NIR spectroscopy. Thus, some emphasis is placed on the description of basic knowledge that is important in learning and using NIR spectroscopy. The book also deals with applications for a variety of research fields that are very useful for a wide range of readers from graduate students to scientists and engineers in both academia and industry. For readers who are novices in NIR spectroscopy, this book provides a good introduction, and for those who already are familiar with the field it affords an excellent means of strengthening their knowledge about NIR spectroscopy and keeping abreast of recent developments.
Written by one of the very first practitioners of ICP-MS, Practical Guide to ICP-MS and Other Atomic Spectroscopy Techniques: A Tutorial for Beginners presents ICP-MS in a completely novel and refreshing way. By comparing it with other complementary atomic spectroscopy (AS) techniques, it gives the trace element analysis user community a glimpse into why the technique was first developed and how the application landscape has defined its use today, 40 years after it was first commercialized in 1983. What’s new in the 4th edition: Updated chapters on the fundamental principles and applications of ICP-MS New chapters on complementary AS techniques including AA, AF, ICP-OES, MIP-AES, XRF, XRD, LIBS, LALI-TOFMS Strategies for reducing errors and contamination with plasma spectrochemical techniques Comparison of collision and reaction cells including triple/multi quad systems Novel approaches to sample digestion Alternative sample introduction accessories Comprehensive glossary of terms used in AS New vendor contact information The book is not only suited to novices and beginners, but also to more experienced analytical scientists who want to know more about recent ICP-MS developments, and where the technique might be heading in the future. Furthermore, it offers much needed guidance on how best to evaluate commercial AS instrumentation and what might be the best technique, based on your lab’s specific application demands. "I feel honored to have been asked to deliver the Foreword for this book, which is suited not only for beginners, but also for more experienced analytical scientists who want to know the advances in plasma spectrochemistry instrumentation and related future opportunities." -Dr. Heidi Goenaga Infante, LGC Science Fellow; Chief Scientist, National Measurement Laboratory, Visiting Professor, University of Strathclyde, UK.
Vibrational Spectroscopy in Protein Research offers a thorough discussion of vibrational spectroscopy in protein research, providing researchers with clear, practical guidance on methods employed, areas of application, and modes of analysis. With chapter contributions from international leaders in the field, the book addresses basic principles of vibrational spectroscopy in protein research, instrumentation and technologies available, sampling methods, quantitative analysis, origin of group frequencies, and qualitative interpretation. In addition to discussing vibrational spectroscopy for the analysis of purified proteins, chapter authors also examine its use in studying complex protein systems, including protein aggregates, fibrous proteins, membrane proteins and protein assemblies. Emphasis throughout the book is placed on applications in human tissue, cell development, and disease analysis, with chapters dedicated to studies of molecular changes that occur during disease progression, as well as identifying changes in tissues and cells in disease studies. - Provides thorough guidance in implementing cutting-edge vibrational spectroscopic methods from international leaders in the field - Emphasizes in vivo, in situ and non-invasive analysis of proteins in biomedical and life science research more broadly - Contains chapters that address vibrational spectroscopy for the study of simple purified proteins and protein aggregates, fibrous proteins, membrane proteins and protein assemblies
Rapid, inexpensive, and easy-to-deploy, near-infrared (NIR) spectroscopy can be used to analyze samples of virtually any composition, origin, and condition. The Handbook of Near Infrared Analysis, Fourth Edition, explores the factors necessary to perform accurate and time- and cost-effective analyses across a growing spectrum of disciplines. This updated and expanded edition incorporates the latest advances in instrumentation, computerization, chemometrics applied to NIR spectroscopy, and method development in NIR spectroscopy, and underscores current trends in sample preparation, calibration transfer, process control, data analysis, instrument performance testing, and commercial NIR instrumentation. This work offers readers an unparalleled combination of theoretical foundations, cutting-edge applications, and practical experience. Additional features include the following: Explains how to perform accurate as well as time- and cost-effective analyses. Reviews software-enabled chemometric methods and other trends in data analysis. Highlights novel applications in pharmaceuticals, polymers, plastics, petrochemicals, textiles, foods and beverages, baked products, agricultural products, biomedicine, nutraceuticals, and counterfeit detection. Underscores current trends in sample preparation, calibration transfer, process control, data analysis, and multiple aspects of commercial NIR instrumentation. Offering the most complete single-source guide of its kind, the Handbook of Near Infrared Analysis, Fourth Edition, continues to offer practicing chemists and spectroscopists an unparalleled combination of theoretical foundations, cutting-edge applications, and detailed practical experience provided firsthand by more than 50 experts in the field.
Containing focused, comprehensive coverage, Practical Guide to Interpretive Near-Infrared Spectroscopy gives you the tools necessary to interpret NIR spectra. The authors present extensive tables, charts, and figures with NIR absorption band assignments and structural information for a broad range of functional groups, organic compounds, and