Download Free Pervaporation Membrane Separation Processes Book in PDF and EPUB Free Download. You can read online Pervaporation Membrane Separation Processes and write the review.

Membrane Separation Processes: Theories, Problems, and Solutions provides graduate and senior undergraduate students and membrane researchers in academia and industry with the fundamental knowledge on the topic by explaining the underlying theory that is indispensable for solving problems that occur in membrane separation processes. All major membrane processes are discussed, and an economic analysis is provided. Separation processes such as RO, UF, MF, RO, PRO and MD are thoroughly discussed. During the last two decades, the scope of the R&D of membrane separation processes has been significantly broadened. Other sections in the book cover membrane contactor and membrane adsorption. In addition, hybrid systems in which two or more membrane systems are combined are now being investigated for large-scale applications. Written by renowned experts with extensive experience with industry, education and R&D who have complementary expertise In-depth coverage of the most important conventional and emerging membrane processes Provides fundamental membrane theories for solving problems in separation processes without using complicated software
Hardbound. Covered here are the various aspects of pervaporation: theory and principles, separation characteristics, sorption and diffusion, thermodynamics and evaluation of polymer materials for membranes, as well as plant design and optimization. The book also includes interesting new material on the synthesis of novel copolymer membranes with very high separation potential and future implications for the pervaporation separation of biological systems and its applications in the exciting field of biochemical engineering. Special attention is paid to industrial research and applications of pervaporation membranes and plant operations involving new pervaporation processes.The book also includes a chapter dealing with the development of vapour permeation for industrial applications, which is a new variant of liquid pervaporation processes.
Synthetic Membranes and Membrane Separation Processes addresses both fundamental and practical aspects of the subject. Topics discussed in the book cover major industrial membrane separation processes, including reverse osmosis, ultrafiltration, microfiltration, membrane gas and vapor separation, and pervaporation. Membrane materials, membrane preparation, membrane structure, membrane transport, membrane module and separation design, and applications are discussed for each separation process. Many problem-solving examples are included to help readers understand the fundamental concepts of the theory behind the processes. The book will benefit practitioners and students in chemical engineering, environmental engineering, and materials science.
This concise and systematically organized text, now in its second edition, gives a clear insight into various membrane separation processes. It covers the fundamentals as well as the recent developments of different processes along with their industrial applications and the products. It includes the basic principles, operating parameters, membrane hardware, flux equation, transport mechanism, and applications of membrane-based technologies. Membrane separation processes are largely rate-controlled separations which require rate analysis for complete understanding. Moreover, a higher level of mathematical analysis, along with the understanding of mass transfer, is also required. These are amply treated in different chapters of the book to make the students comprehend the membrane separation principles with ease. This textbook is primarily designed for undergraduate students of chemical engineering, biochemical engineering and biotechnology for the course in membrane separation processes. Besides, the book will also be useful to process engineers and researchers. KEY FEATURES • Provides sufficient number of examples of industrial applications related to chemical, metallurgical, biochemical and food processing industries. • Focuses on important biomedical applications of membrane-based technologies such as blood oxygenator, controlled drug delivery, plasmapheresis, and bioartificial organs. • Includes chapter-end short questions and problems to test students’ comprehension of the subject. NEW TO THIS EDITION • A new section on membrane cleaning is included. Membrane fabrication methods are supplemented with additional information (Chapter 2). • Additional information on silt density index, forward osmosis and sea water desalination (Chapter 3). • Physicochemical parameters affecting nanofiltration, determination of various resistances using resistance in series model and few more industrial applications with additional short questions (Chapter 4). • Membrane cross-linking methods used in pervaporation, factors affecting pervaporation and few more applications (Chapter 9). • Membrane distillation, membrane reactor with different modules, types of membranes and reactions for membrane reactor (Chapter 13).
Synthetic Membranes and Membrane Separation Processes addresses both fundamental and practical aspects of the subject. Topics discussed in the book cover major industrial membrane separation processes, including reverse osmosis, ultrafiltration, microfiltration, membrane gas and vapor separation, and pervaporation. Membrane materials, membrane preparation, membrane structure, membrane transport, membrane module and separation design, and applications are discussed for each separation process. Many problem-solving examples are included to help readers understand the fundamental concepts of the theory behind the processes. The book will benefit practitioners and students in chemical engineering, environmental engineering, and materials science.
With a detailed analysis of the mass transport through membrane layers and its effect on different separation processes, this book provides a comprehensive look at the theoretical and practical aspects of membrane transport properties and functions. Basic equations for every membrane are provided to predict the mass transfer rate, the concentration distribution, the convective velocity, the separation efficiency, and the effect of chemical or biochemical reaction taking into account the heterogeneity of the membrane layer to help better understand the mechanisms of the separation processes. The reader will be able to describe membrane separation processes and the membrane reactors as well as choose the most suitable membrane structure for separation and for membrane reactor. Containing detailed discussion of the latest results in transport processes and separation processes, this book is essential for chemistry students and practitioners of chemical engineering and process engineering. Detailed survey of the theoretical and practical aspects of every membrane process with specific equations Practical examples discussed in detail with clear steps Will assist in planning and preparation of more efficient membrane structure separation
Pervaporation is a separation process in which the selective permeation of components of a liquid mixture is achieved by way of a chemical potential gradient through a non-porous membrane. In Pervaporation: Process, Materials and Applications, the fundamentals and applications of pervaporation are described as a promising technique for the recovery of flavor compounds from dilute aqueous solutions, separation of azeotropic mixtures and for the dehydration of organic solvents. This collection also describes history of pervaporation in an effort to outline the differences between this and other membrane separation technologies including dialysis, ultrafiltration, microfiltration, nanofiltration and reverse osmosis. The closing chapter focuses on the authors on-going development of high performance bio-based cellulosic membranes for ethyl tert-butyl ether purification by pervaporation. Cellulose acetate is extremely selective for ethanol removal from ethyl tert-butyl ether, however its flux is very low. Different strategies for improving its flux while maintaining a high selectivity are described and the main relationships between membrane structure, morphology and properties are illustrated.
Design and Synthesis of Membrane Separation Processes provides a novel method of design and synthesis for membrane separation. While the main focus of the book is given to gas separation and pervaporation membranes, the theory has been developed in such a way that it is general and valid for any type of membrane. The method, which uses a graphical technique, allows one to calculate and visualize the change in composition of the retentate (non-permeate) phase. This graphical approach is based on Membrane Residue Curve Maps. One of the strengths of this approach is that it is exactly analogous to the method of Residue Curve Maps that has proved so successful in distillation system synthesis and design.
The chapters of this book are based upon lectures presented at the NATO Advanced Study Institute on Membrane Processes in Separation and Purification (March 21 - April 2, 1993, Curia, Portugal), organized as a successor and update to a similar Institute that took place 10 years ago (p.M.Bungay, H.K. Lonsdale, M.N. de Pinho (Eds.): Synthetic Membranes: Science, Engineering and Applications, NATO ASI Series, Reidel, Dordrecht, 1986). The decade between the two NATO Institutes witnesses the transition from individually researched membrane processes to an applied and established membrane separation technology, as is reflected by the contents of the corresponding proceeding volumes. By and large, the first volume presents itself as a textbook on membrane processes, still valid, while the present volume focuses on areas of separation need as amenable to membrane processing: Biotechnology and Environmental Technology. Accordingly, the contributions to this volume are grouped into "Membranes in Biotechnology" (11 papers), "Membranes in Environmental Technology" (6 papers), and "New Concepts" (4 papers). This is followed by one contribution each on "Energy Requirements" and "Education", i.e., membrane processes within an academic curriculum. The book thus amounts to a state of the art of applied membrane processing and may well augment the more fundamental approach of its predecessor.
Fundamental Modelling of Membrane Systems: Membrane and Process Performance summarizes the state-of-the-art modeling approaches for all significant membrane processes, from molecular transport, to process level, helping researchers and students who carry out experimental research save time and accurately interpret experimental data. The book provides an overview of the different membrane technologies, handling micro-, ultra-, and nanofiltration, reverse and forward osmosis, pervaporation, gas permeation, supported liquid membranes, membrane contactors, membrane bioreactors and ion-exchange membrane systems. Examples of hybrid membrane systems are also included. Presents an accessible reference on how to model membranes and membrane processes Provides a clear, mathematical description of mass transfer in membrane systems Written by well-known, prominent authors in the field of membrane science