Download Free Perturbation Analysis Optimization And Resource Contention Games In Stochastic Hybrid Systems Book in PDF and EPUB Free Download. You can read online Perturbation Analysis Optimization And Resource Contention Games In Stochastic Hybrid Systems and write the review.

Discrete event systems (DES) have become pervasive in our daily lives. Examples include (but are not restricted to) manufacturing and supply chains, transportation, healthcare, call centers, and financial engineering. However, due to their complexities that often involve millions or even billions of events with many variables and constraints, modeling these stochastic simulations has long been a “hard nut to crack”. The advance in available computer technology, especially of cluster and cloud computing, has paved the way for the realization of a number of stochastic simulation optimization for complex discrete event systems. This book will introduce two important techniques initially proposed and developed by Professor Y C Ho and his team; namely perturbation analysis and ordinal optimization for stochastic simulation optimization, and present the state-of-the-art technology, and their future research directions.
Illustrated with real-life manufacturing examples, Formal Methods in Manufacturing provides state-of-the-art solutions to common problems in manufacturing systems. Assuming some knowledge of discrete event systems theory, the book first delivers a detailed introduction to the most important formalisms used for the modeling, analysis, and control of manufacturing systems (including Petri nets, automata, and max-plus algebra), explaining the advantages of each formal method. It then employs the different formalisms to solve specific problems taken from today’s industrial world, such as modeling and simulation, supervisory control (including deadlock prevention) in a distributed and/or decentralized environment, performance evaluation (including scheduling and optimization), fault diagnosis and diagnosability analysis, and reconfiguration. Containing chapters written by leading experts in their respective fields, Formal Methods in Manufacturing helps researchers and application engineers handle fundamental principles and deal with typical quality goals in the design and operation of manufacturing systems.
Event-based systems are a class of reactive systems deployed in a wide spectrum of engineering disciplines including control, communication, signal processing, and electronic instrumentation. Activities in event-based systems are triggered in response to events usually representing a significant change of the state of controlled or monitored physical variables. Event-based systems adopt a model of calls for resources only if it is necessary, and therefore, they are characterized by efficient utilization of communication bandwidth, computation capability, and energy budget. Currently, the economical use of constrained technical resources is a critical issue in various application domains because many systems become increasingly networked, wireless, and spatially distributed. Event-Based Control and Signal Processing examines the event-based paradigm in control, communication, and signal processing, with a focus on implementation in networked sensor and control systems. Featuring 23 chapters contributed by more than 60 leading researchers from around the world, this book covers: Methods of analysis and design of event-based control and signal processing Event-driven control and optimization of hybrid systems Decentralized event-triggered control Periodic event-triggered control Model-based event-triggered control and event-triggered generalized predictive control Event-based intermittent control in man and machine Event-based PID controllers Event-based state estimation Self-triggered and team-triggered control Event-triggered and time-triggered real-time architectures for embedded systems Event-based continuous-time signal acquisition and DSP Statistical event-based signal processing in distributed detection and estimation Asynchronous spike event coding technique with address event representation Event-based processing of non-stationary signals Event-based digital (FIR and IIR) filters Event-based local bandwidth estimation and signal reconstruction Event-Based Control and Signal Processing is the first extensive study on both event-based control and event-based signal processing, presenting scientific contributions at the cutting edge of modern science and engineering.
Cyber-Physical Systems: Foundations, Principles and Applications explores the core system science perspective needed to design and build complex cyber-physical systems. Using Systems Science's underlying theories, such as probability theory, decision theory, game theory, organizational sociology, behavioral economics, and cognitive psychology, the book addresses foundational issues central across CPS applications, including System Design -- How to design CPS to be safe, secure, and resilient in rapidly evolving environments, System Verification -- How to develop effective metrics and methods to verify and certify large and complex CPS, Real-time Control and Adaptation -- How to achieve real-time dynamic control and behavior adaptation in a diverse environments, such as clouds and in network-challenged spaces, Manufacturing -- How to harness communication, computation, and control for developing new products, reducing product concepts to realizable designs, and producing integrated software-hardware systems at a pace far exceeding today's timeline. The book is part of the Intelligent Data-Centric Systems: Sensor-Collected Intelligence series edited by Fatos Xhafa, Technical University of Catalonia. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Includes in-depth coverage of the latest models and theories that unify perspectives, expressing the interacting dynamics of the computational and physical components of a system in a dynamic environment - Focuses on new design, analysis, and verification tools that embody the scientific principles of CPS and incorporate measurement, dynamics, and control - Covers applications in numerous sectors, including agriculture, energy, transportation, building design and automation, healthcare, and manufacturing
Cyber-physical systems (CPS) involve deeply integrated, tightly coupled computational and physical components. These systems, spanning multiple scientific and technological domains, are highly complex and pose several fundamental challenges. They are also critically important to society’s advancement and security. The design and deployment of the adaptable, reliable CPS of tomorrow requires the development of a basic science foundation, synergistically drawing on various branches of engineering, mathematics, computer science, and domain specific knowledge. This book brings together 19 invited papers presented at the Workshop on Control of Cyber-Physical Systems, hosted by the Department of Electrical & Computer Engineering at The Johns Hopkins University in March 2013. It highlights the central role of control theory and systems thinking in developing the theory of CPS, in addressing the challenges of cyber-trust and cyber-security, and in advancing emerging cyber-physical applications ranging from smart grids to smart buildings, cars and robotic systems.
Because they incorporate both time- and event-driven dynamics, stochastic hybrid systems (SHS) have become ubiquitous in a variety of fields, from mathematical finance to biological processes to communication networks to engineering. Comprehensively integrating numerous cutting-edge studies, Stochastic Hybrid Systems presents a captivating treatment of some of the most ambitious types of dynamic systems. Cohesively edited by leading experts in the field, the book introduces the theoretical basics, computational methods, and applications of SHS. It first discusses the underlying principles behind SHS and the main design limitations of SHS. Building on these fundamentals, the authoritative contributors present methods for computer calculations that apply SHS analysis and synthesis techniques in practice. The book concludes with examples of systems encountered in a wide range of application areas, including molecular biology, communication networks, and air traffic management. It also explains how to resolve practical problems associated with these systems. Stochastic Hybrid Systems achieves an ideal balance between a theoretical treatment of SHS and practical considerations. The book skillfully explores the interaction of physical processes with computerized equipment in an uncertain environment, enabling a better understanding of sophisticated as well as everyday devices and processes.
A compact, highly-motivated introduction to some of the stochastic models found useful in the study of communications networks.
Introduction to Discrete Event Systems is a comprehensive introduction to the field of discrete event systems, offering a breadth of coverage that makes the material accessible to readers of varied backgrounds. The book emphasizes a unified modeling framework that transcends specific application areas, linking the following topics in a coherent manner: language and automata theory, supervisory control, Petri net theory, Markov chains and queuing theory, discrete-event simulation, and concurrent estimation techniques. This edition includes recent research results pertaining to the diagnosis of discrete event systems, decentralized supervisory control, and interval-based timed automata and hybrid automata models.
Nonlinear Assignment Problems (NAPs) are natural extensions of the classic Linear Assignment Problem, and despite the efforts of many researchers over the past three decades, they still remain some of the hardest combinatorial optimization problems to solve exactly. The purpose of this book is to provide in a single volume, major algorithmic aspects and applications of NAPs as contributed by leading international experts. The chapters included in this book are concerned with major applications and the latest algorithmic solution approaches for NAPs. Approximation algorithms, polyhedral methods, semidefinite programming approaches and heuristic procedures for NAPs are included, while applications of this problem class in the areas of multiple-target tracking in the context of military surveillance systems, of experimental high energy physics, and of parallel processing are presented. Audience: Researchers and graduate students in the areas of combinatorial optimization, mathematical programming, operations research, physics, and computer science.