Download Free Perspectives On Auditory Research Book in PDF and EPUB Free Download. You can read online Perspectives On Auditory Research and write the review.

Perspectives on Auditory Research celebrates the last two decades of the Springer Handbook in Auditory Research. Contributions from the leading experts in the field examine the progress made in auditory research over the past twenty years, as well as the major questions for the future.
Assessment of the central auditory nervous system; pseudohypacusis; occupational hearing loss prevention; and instrumentation and calibration. For hearing professionals and others looking for the latest information on contemporary hearing assessment.
We live in a complex and dynamically changing acoustic environment. To this end, the auditory cortex of humans has developed the ability to process a remarkable amount of diverse acoustic information with apparent ease. In fact, a phylogenetic comparison of auditory systems reveals that human auditory association cortex in particular has undergone extensive changes relative to that of other species, although our knowledge of this remains incomplete. In contrast to other senses, human auditory cortex receives input that is highly pre-processed in a number of sub-cortical structures; this suggests that even primary auditory cortex already performs quite complex analyses. At the same time, much of the functional role of the various sub-areas in human auditory cortex is still relatively unknown, and a more sophisticated understanding is only now emerging through the use of contemporary electrophysiological and neuroimaging techniques. The integration of results across the various techniques signify a new era in our knowledge of how human auditory cortex forms basis for auditory experience. This volume on human auditory cortex will have two major parts. In Part A, the principal methodologies currently used to investigate human auditory cortex will be discussed. Each chapter will first outline how the methodology is used in auditory neuroscience, highlighting the challenges of obtaining data from human auditory cortex; second, each methods chapter will provide two or (at most) three brief examples of how it has been used to generate a major result about auditory processing. In Part B, the central questions for auditory processing in human auditory cortex are covered. Each chapter can draw on all the methods introduced in Part A but will focus on a major computational challenge the system has to solve. This volume will constitute an important contemporary reference work on human auditory cortex. Arguably, this will be the first and most focused book on this critical neurological structure. The combination of different methodological and experimental approaches as well as a diverse range of aspects of human auditory perception ensures that this volume will inspire novel insights and spurn future research.
Loudness is the primary psychological correlate of intensity. When the intensity of a sound increases, loudness increases. However, there exists no simple one-to-one correspondence between loudness and intensity; loudness can be changed by modifying the frequency or the duration of the sound, or by adding background sounds. Loudness also changes with the listener’s cognitive state. Loudness provides a basic reference for graduate students, consultants, clinicians, and researchers with a focus on recent discoveries. The book begins with an overview of the conceptual thinking related to the study of loudness, addresses issues related to its measurement, and later discusses the physiological effects of loud sounds, reaction times and electrophysiological measures that correlate with loudness. Loudness in the laboratory, loudness of steady-state sounds and the loudness of time-varying sounds are also covered, as are hearing loss and models.
Although speech is the primary behavioral medium by which humans communicate, its auditory basis is poorly understood, having profound implications on efforts to ameliorate the behavioral consequences of hearing impairment and on the development of robust algorithms for computer speech recognition. In this volume, the authors provide an up-to-date synthesis of recent research in the area of speech processing in the auditory system, bringing together a diverse range of scientists to present the subject from an interdisciplinary perspective. Of particular concern is the ability to understand speech in uncertain, potentially adverse acoustic environments, currently the bane of both hearing aid and speech recognition technology. There is increasing evidence that the perceptual stability characteristic of speech understanding is due, at least in part, to elegant transformations of the acoustic signal performed by auditory mechanisms. As a comprehensive review of speech's auditory basis, this book will interest physiologists, anatomists, psychologists, phoneticians, computer scientists, biomedical and electrical engineers, and clinicians.
An integrated overview of hearing and the interplay of physical, biological, and psychological processes underlying it. Every time we listen—to speech, to music, to footsteps approaching or retreating—our auditory perception is the result of a long chain of diverse and intricate processes that unfold within the source of the sound itself, in the air, in our ears, and, most of all, in our brains. Hearing is an "everyday miracle" that, despite its staggering complexity, seems effortless. This book offers an integrated account of hearing in terms of the neural processes that take place in different parts of the auditory system. Because hearing results from the interplay of so many physical, biological, and psychological processes, the book pulls together the different aspects of hearing—including acoustics, the mathematics of signal processing, the physiology of the ear and central auditory pathways, psychoacoustics, speech, and music—into a coherent whole.
Cochlear implants are currently the standard treatment for profound sensorineural hearing loss. In the last decade, advances in auditory science and technology have not only greatly expanded the utility of electric stimulation to other parts of the auditory nervous system in addition to the cochlea, but have also demonstrated drastic changes in the brain in responses to electric stimulation, including changes in language development and music perception. Volume 20 of SHAR focused on basic science and technology underlying the cochlear implant. However, due to the newness of the ideas and technology, the volume did not cover any emerging applications such as bilateral cochlear implants, combined acoustic-electric stimulation, and other types of auditory prostheses, nor did it review brain plasticity in responses to electric stimulation and its perceptual and language consequences. This proposed volume takes off from Volume 20, and expands the examination of implants into new and highly exciting areas. This edited book starts with an overview and introduction by Dr. Fan-Gang Zeng. Chapters 2-9 cover technological development and the advances in treating the full spectrum of ear disorders in the last ten years. Chapters 10-15 discuss brain responses to electric stimulation and their perceptual impact. This volume is particularly exciting because there have been quantum leap from the traditional technology discussed in Volume 20. Thus, this volume is timely and will be of real importance to the SHAR audience.
Translational Research is the interface between basic science and human clinical application, including the entire process from animal studies to human clinical trials (phases I, II, and III). Translational Research moves promising basic science results from the laboratory to bedside application. Yet, this transition is often the least-defined, least-understood part of the research process. Most scientific training programs provide little or no systematic introduction to the issues, challenges, and obstacles that prevent effective research translation, even though these are the key steps that enable high-impact basic science to ultimately result in significant clinical advances that improve patient outcome. This volume will provide an overview of key issues in translation of research from “bedside to bench to bedside”, not only from the perspective of the key funding agencies, but also from the scientists and clinicians who are currently involved in the translational research process. It will attempt to offer insight into real-world experience with intellectual property and technology transfer activities that can help move auditory technologies ahead, as scientists and clinicians typically have little or no formal training in these areas. Translational Research in Audiology and the Hearing Sciences will be aimed at graduate students and postdoctoral investigators, as well as professionals and academics. It is intended to function as a high-profile and up-to-date reference work on Translational Research in the auditory sciences, emphasizing research programs in the traditional areas including drugs and devices, as well as less traditional, still emerging, areas such as sensorineural hearing loss, auditory processing disorder, cochlear implants and hearing aids, and tinnitus therapies.