Download Free Personalized Medicine With A Nanochemistry Twist Book in PDF and EPUB Free Download. You can read online Personalized Medicine With A Nanochemistry Twist and write the review.

Medicinal chemistry is both science and art. The science of medicinal chemistry offers mankind one of its best hopes for improving the quality of life. The art of medicinal chemistry continues to challenge its practitioners with the need for both intuition and experience to discover new drugs. Hence sharing the experience of drug research is uniquely beneficial to the field of medicinal chemistry. Drug research requires interdisciplinary team-work at the interface between chemistry, biology and medicine. Therefore, the topic-related series Topics in Medicinal Chemistry covers all relevant aspects of drug research, e.g. pathobiochemistry of diseases, identification and validation of (emerging) drug targets, structural biology, drugability of targets, drug design approaches, chemogenomics, synthetic chemistry including combinatorial methods, bioorganic chemistry, natural compounds, high-throughput screening, pharmacological in vitro and in vivo investigations, drug-receptor interactions on the molecular level, structure-activity relationships, drug absorption, distribution, metabolism, elimination, toxicology and pharmacogenomics. In general, special volumes are edited by well known guest editors.
"Cell niches are present in several human body tissues as a dynamic microenvironment essential to modulate stem cells' behavior in health, under injury, and in regenerative processes. The interplay between stem cells and their niche is necessary for sustaining tissues. The extracellular matrix (ECM) is the crucial component of the stem cell. It defines the architectural space, physical binding to the cell membrane, and interactions with the neighborhood cells and supports physical stress. Domains with nano or micrometric sizes define the surface and topology of the ECM, mediating cell interactions and macrophage recruitment to injured sites. Over the last two decades, the integration of biomedicine with other engineering and biomaterial sciences promoted the development of nanotechnology and regenerative medicine toward mimicking the specialized stem cell niches to treat diseases with less invasive and efficient therapies. Innovative approaches in nanotechnology, such as targeting the immunological system, transporting drugs across blood–brain/BBB and blood–retinal barriers/BRB, directing active moiety to specific disease location/organs, encapsulation of multiple components, and promoting signalization and pathway-specific surfaces for cell interactions and growth, are indeed promising. On the other side, developments of biomaterial scaffolds to mimic the cell niches for interactions with stem cells in vitro or in vivo have tremendous potential. The three-dimensional printing technology offers a base for a wide array of applications, for example, developing tissue constructs, mimetic organs, organoids, and organ-on-a-chip, thus avoiding the differences between animal model species and humans. Aiming closer to the natural environments, fresh autologous products from the blood, such as platelet-rich plasma (PRP), contain platelets and leukocytes, providing growth factors, cytokines, and proteins for the resident stem cells in the stages of regeneration. PRP also provides pain relief, reducing disabilities in elderly or diseased people. This book brings thought-provoking multidisciplinary topics on the diverse aspects of basic and applied sciences. The prime focus of the compilation is to understand the challenges researchers encounter in combining nanotechnology and regenerative medicine, ultimately integrating both disciplines for the benefit of the patient and offering them a ray of hope to be cured. - Presents multi-disciplined knowledge on bench-to-bedside application of nanotechnology in regenerative medicines - Highlights the fundamentals, frontiers, limitations, and challenges faced by regenerative medicines - Exhibits synergy of biotechnology, nanomedicine, biomedicine, chemical-material engineering, pharmaceutical technology, and applied medical sciences in success of regenerative medicines
This book presents a thorough discussion of the physics, biology, chemistry and medicinal science behind a new and important area of materials science and engineering: polymer nanocomposites. The tremendous opportunities of polymer nanocomposites in the biomedical field arise from their multitude of applications and their ability to satisfy the vastly different functional requirements for each of these applications. In the biomedical field, a polymer nanocomposite system must meet certain design and functional criteria, including biocompatibility, biodegradability, mechanical properties, and, in some cases, aesthetic demands. The content of this book builds on what has been learnt in elementary courses about synthesising polymers, different nanoparticles, polymer composites, biomedical requirements, uses of polymer nanocomposites in medicine as well as medical devices and the major mechanisms involved during each application. The impact of hybrid nanofillers and synergistic composite mixtures which are used extensively or show promising outcomes in the biomedical field are also discussed. These novel materials vary from inorganic/ceramic-reinforced nanocomposites for mechanical property improvement to peptide-based nanomaterials, with the chemistry designed to render the entire material biocompatible.
Nanoscale Processing outlines recent advances in processing techniques for a range of nanomaterial types. New developments in the processing of nanostructured materials are being applied in diverse fields. This book offers in-depth information and analysis of a range of processing techniques for nanostructures, and also covers nanocharacterization aspects thoroughly. Topics covered include zero dimensional nanostructures, nanostructured biomaterials, carbon-based nanostructures, polymeric and liposomal nanostructures, and quantum dots. This book is an important resource for materials scientists and engineers looking to learn more about a variety of processing techniques for various nanomaterial classes, for use in both the industrial and biomedical sectors. - Explains major nanoscale processing techniques, outlining in which situations each should be used - Discuses a range of nanomaterial classes, including nanobiomaterials, polymeric nanomaterials, optical nanomaterials and magnetic nanomaterials - Explores the challenges of using certain processing techniques for certain classes of nanomaterial
Supramolecular chemistry and nanochemistry are two strongly interrelated cutting edge frontiers in research in the chemical sciences. The results of recent work in the area are now an increasing part of modern degree courses and hugely important to researchers. Core Concepts in Supramolecular Chemistry and Nanochemistry clearly outlines the fundamentals that underlie supramolecular chemistry and nanochemistry and takes an umbrella view of the whole area. This concise textbook traces the fascinating modern practice of the chemistry of the non-covalent bond from its fundamental origins through to it expression in the emergence of nanochemistry. Fusing synthetic materials and supramolecular chemistry with crystal engineering and the emerging principles of nanotechnology, the book is an ideal introduction to current chemical thought for researchers and a superb resource for students entering these exciting areas for the first time. The book builds from first principles rather than adopting a review style and includes key references to guide the reader through influential work. supplementary website featuring powerpoint slides of the figures in the book further references in each chapter builds from first principles rather than adopting a review style includes chapter on nanochemistry clear diagrams to highlight basic principles
Written by the founder of the field, this is a comprehensive and accessible introduction to structural DNA nanotechnology.
Discussions of the basic structural, nanotechnology, and system engineering principles, as well as an introductory overview of essential concepts and methods in biotechnology, will be included. Text is presented side-by-side with extensive use of high-quality illustrations prepared using cutting edge computer graphics techniques. Includes numerous examples, such applications in genetic engineering. Represents the only available introduction and overview of this interdisciplinary field, merging the physical and biological sciences. Concludes with the authors' expert assessment of the future promise of nanotechnology, from molecular "tinkertoys" to nanomedicine. David Goodsell is author of two trade books, Machinery of Life and Our Molecular Nature, and Arthur Olson is the world's leader in molecular graphics and nano-scale representation.
Explore recent progress and developments in atomically precise nanochemistry Chemists have long been motivated to create atomically precise nanoclusters, not only for addressing some fundamental issues that were not possible to tackle with imprecise nanoparticles, but also to provide new opportunities for applications such as catalysis, optics, and biomedicine. In Atomically Precise Nanochemistry, a team of distinguished researchers delivers a state-of-the-art reference for researchers and industry professionals working in the fields of nanoscience and cluster science, in disciplines ranging from chemistry to physics, biology, materials science, and engineering. A variety of different nanoclusters are covered, including metal nanoclusters, semiconductor nanoclusters, metal-oxo systems, large-sized organometallic nano-architectures, carbon clusters, and supramolecular architectures. The book contains not only experimental contributions, but also theoretical insights into the atomic and electronic structures, as well as the catalytic mechanisms. The authors explore synthesis, structure, geometry, bonding, and applications of each type of nanocluster. Perfect for researchers working in nanoscience, nanotechnology, and materials chemistry, Atomically Precise Nanochemistry will also benefit industry professionals in these sectors seeking a practical and up-to-date resource.
Written by a bestselling author and expert in nanochemistry, this title is ideal for interdisciplinary courses in chemistry, materials science, or physics.
Nanoparticle technology, which handles the preparation, processing, application and characterisation of nanoparticles, is a new and revolutionary technology. It becomes the core of nanotechnology as an extension of the conventional Fine Particle / Powder Technology. Nanoparticle technology plays an important role in the implementation of nanotechnology in many engineering and industrial fields including electronic devices, advanced ceramics, new batteries, engineered catalysts, functional paint and ink, Drug Delivery System, biotechnology, etc.; and makes use of the unique properties of the nanoparticles which are completely different from those of the bulk materials.This new handbook is the first to explain complete aspects of nanoparticles with many application examples showing their advantages and advanced development. There are handbooks which briefly mention the nanosized particles or their related applications, but no handbook describing the complete aspects of nanoparticles has been published so far.The handbook elucidates of the basic properties of nanoparticles and various nanostructural materials with their characterisation methods in the first part. It also introduces more than 40 examples of practical and potential uses of nanoparticles in the later part dealing with applications. It is intended to give readers a clear picture of nanoparticles as well as new ideas or hints on their applications to create new materials or to improve the performance of the advanced functional materials developed with the nanoparticles.* Introduces all aspects of nanoparticle technology, from the fundamentals to applications.* Includes basic information on the preparation through to the characterization of nanoparticles from various viewpoints * Includes information on nanostructures, which play an important role in practical applications.