Download Free Personal Genomes Accessing Sharing And Interpretation Book in PDF and EPUB Free Download. You can read online Personal Genomes Accessing Sharing And Interpretation and write the review.

Here is a Human Being delivers the first in-depth look at the Personal Genome Project—the effort to construct complete genomic maps of a specific human beings—written by one of the study’s ten human participants. Misha Angrist recounts the project’s fascinating nuances, including the larger-than-life personalities of the research subjects, the entrepreneurial scientists at the helm, the bewildered and overwhelmed physicians and regulators who negotiated for it, the fascinating technology it employed, and the political, social, ethical and familial issues it continues to raise. In the vein of James Shreeve’s The Genome War, Craig J. Ventner’s My Life Decoded, and Francis J. Collins’ The Language of Life, Angrist’s informed exploration of this cutting-edge science is a gripping look at the present and future of genomics.
Rapid advances in high-throughput genome sequencing technologies foreshadow a near-future in which millions of individuals will gain affordable access to their complete genome sequence. This promises to give unprecedented insights into the fundamental biological nature of ourselves and our species: where we came from, how we are born, how we interact with our environment, how we get sick, how we get well, and how we age. Personal genomics is therefore an important component of the inevitable transition towards personalized medicine, as the medical establishment begins to explore and evaluate the role of personal genomics in health and medicine. However there is currently very little training available for medical practitioners. Exploring Personal Genomics provides a novel, inquiry-based approach to understanding and interpreting the practical, medical, and societal aspects of personal genomic information. It is presented in two parts: the first provides readers of all backgrounds with a fundamental understanding of the biology of human genomes, information on how to obtain and understand digital representations of personal genomic data, tools and techniques for exploring the personal genomics of ancestry and genealogy, discovery and interpretation of genetic trait associations, and the role of personal genomics in drug response. The second part offers more advanced readers an understanding of the science, tools, and techniques for investigating interactions between a personal genome and the environment, connecting DNA to physiology, assessing rare variants and structural variation, and exploring resources for performing personal biological investigation. This advanced textbook is primarily aimed at undergraduate and graduate students taking classes in genomic medicine, genetics, and bioinformatics. It will also be of relevance and use to medical practitioners, evolutionary biologists, geneticists and individuals interested in exploring their personal genetic data.
Forensic Science provides a comprehensive overview of the sociology of forensic science. Drawing on a wealth of international research and case studies, it explores the intersection of science, technology, law and society and examines the production of forensic knowledge. The book explores a range of key topics such as: • The integration of science into police work and criminal investigation • The relationship between law and science • Ethical and social issues raised by new forensic technology including DNA analysis • Media portrayals of forensic science • Forensic policy and the international agenda for forensic science This new edition has been fully updated, particularly with regard to new technology in relation to the various new forms of DNA technology and facial recognition. Updates and additions include: • Facial recognition technology • Digital forensics and its use in policing • Algorithms (such as probabilistic genotyping) • Genealogical searching • Phenotyping This new edition also reviews and critically appraises recent scholarship in the field, and new international case studies have been introduced, providing readers with an international comparative perspective. Engaging with sociological literature to make arguments about the ways in which forensic science is socially constituted and shapes justice, Forensic Science provides an excellent introduction to students about the location of forensic science and the ways it fits within the criminal justice system, as well as systems of professionalisation and ethics. It is important and compelling reading for students taking a range of courses, including criminal investigation, policing, forensic science, and the sociology of science and technology.
Medical and Health Genomics provides concise and evidence-based technical and practical information on the applied and translational aspects of genome sciences and the technologies related to non-clinical medicine and public health. Coverage is based on evolving paradigms of genomic medicine—in particular, the relation to public and population health genomics now being rapidly incorporated in health management and administration, with further implications for clinical population and disease management. - Provides extensive coverage of the emergent field of health genomics and its huge relevance to healthcare management - Presents user-friendly language accompanied by explanatory diagrams, figures, and many references for further study - Covers the applied, but non-clinical, sciences across disease discovery, genetic analysis, genetic screening, and prevention and management - Details the impact of clinical genomics across a diverse array of public and community health issues, and within a variety of global healthcare systems
Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.
There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.
Molecular Diagnostics, Third Edition, focuses on the technologies and applications that professionals need to work in, develop, and manage a clinical diagnostic laboratory. Each chapter contains an expert introduction to each subject that is next to technical details and many applications for molecular genetic testing that can be found in comprehensive reference lists at the end of each chapter. Contents are divided into three parts, technologies, application of those technologies, and related issues. The first part is dedicated to the battery of the most widely used molecular pathology techniques. New chapters have been added, including the various new technologies involved in next-generation sequencing (mutation detection, gene expression, etc.), mass spectrometry, and protein-specific methodologies. All revised chapters have been completely updated, to include not only technology innovations, but also novel diagnostic applications. As with previous editions, each of the chapters in this section includes a brief description of the technique followed by examples from the area of expertise from the selected contributor. The second part of the book attempts to integrate previously analyzed technologies into the different aspects of molecular diagnostics, such as identification of genetically modified organisms, stem cells, pharmacogenomics, modern forensic science, molecular microbiology, and genetic diagnosis. Part three focuses on various everyday issues in a diagnostic laboratory, from genetic counseling and related ethical and psychological issues, to safety and quality management. - Presents a comprehensive account of all new technologies and applications used in clinical diagnostic laboratories - Explores a wide range of molecular-based tests that are available to assess DNA variation and changes in gene expression - Offers clear translational presentations by the top molecular pathologists, clinical chemists, and molecular geneticists in the field
The long-awaited story of the science, the business, the politics, the intrigue behind the scenes of the most ferocious competition in the history of modern science—the race to map the human genome. On May 10, 1998, biologist Craig Venter, director of the Institute for Genomic Research, announced that he was forming a private company that within three years would unravel the complete genetic code of human life—seven years before the projected finish of the U.S. government’s Human Genome Project. Venter hoped that by decoding the genome ahead of schedule, he would speed up the pace of biomedical research and save the lives of thousands of people. He also hoped to become very famous and very rich. Calling his company Celera (from the Latin for “speed”), he assembled a small group of scientists in an empty building in Rockville, Maryland, and set to work. At the same time, the leaders of the government program, under the direction of Francis Collins, head of the National Human Genome Research Institute at the National Institutes of Health, began to mobilize an unexpectedly unified effort to beat Venter to the prize—knowledge that had the potential to revolutionize medicine and society. The stage was set for one of the most thrilling—and important—dramas in the history of science. The Genome War is the definitive account of that drama—the race for the greatest prize biology has had to offer, told by a writer with exclusive access to Venter’s operation from start to finish. It is also the story of how one man’s ambition created a scientific Camelot where, for a moment, it seemed that the competing interests of pure science and commercial profit might be gloriously reconciled—and the national repercussions that resulted when that dream went awry.
Clinical Genome Sequencing: Psychological Aspects thoroughly details key psychological factors to consider while implementing genome sequencing in clinical practice, taking into account the subtleties of genetic risk assessment, patient consent and best practices for sharing genomic findings. Chapter contributions from leading international researchers and practitioners cover topics ranging from the current state of genomic testing, to patient consent, patient responses to sequencing data, common uncertainties, direct-to-consumer genomics, the role of genome sequencing in precision medicine, genetic counseling and genome sequencing, genome sequencing in pediatrics, genome sequencing in prenatal testing, and ethical issues in genome sequencing. Applied clinical case studies support concept illustration, making this an invaluable, practical reference for this important and multifaceted topic area within genomic medicine.