Download Free Permutation Representations Of Finite Groups Book in PDF and EPUB Free Download. You can read online Permutation Representations Of Finite Groups and write the review.

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.
This book presents a systematic account of this topic, from the classical foundations established by Schur 80 years ago to current advances and developments in the field. This work focuses on general methods and builds theory solidly on the study of modules over twisted group algebras, and provides a wide range of skill-sharpening mathematical techniques applicable to this subject. Offers an understanding of projective representations of finite groups for algebraists, number theorists, mathematical researchers studying modern algebra, and theoretical physicists.
Finite Permutation Groups provides an introduction to the basic facts of both the theory of abstract finite groups and the theory of permutation groups. This book deals with older theorems on multiply transitive groups as well as on simply transitive groups. Organized into five chapters, this book begins with an overview of the fundamental concepts of notation and Frobenius group. This text then discusses the modifications of multiple transitivity and can be used to deduce an improved form of the classical theorem. Other chapters consider the concept of simply transitive permutation groups. This book discusses as well permutation groups in the framework of representation theory. The final chapter deals with Frobenius' theory of group characters. This book is a valuable resource for engineers, mathematicians, and research workers. Graduate students and readers who are interested in finite permutation groups will also find this book useful.
This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.
Representation Theory of Finite Groups is a five chapter text that covers the standard material of representation theory. This book starts with an overview of the basic concepts of the subject, including group characters, representation modules, and the rectangular representation. The succeeding chapters describe the features of representation theory of rings with identity and finite groups. These topics are followed by a discussion of some of the application of the theory of characters, along with some classical theorems. The last chapter deals with the construction of irreducible representations of groups. This book will be of great value to graduate students who wish to acquire some knowledge of representation theory.
Following the basic ideas, standard constructions and important examples in the theory of permutation groups, the book goes on to develop the combinatorial and group theoretic structure of primitive groups leading to the proof of the pivotal ONan-Scott Theorem which links finite primitive groups with finite simple groups. Special topics covered include the Mathieu groups, multiply transitive groups, and recent work on the subgroups of the infinite symmetric groups. With its many exercises and detailed references to the current literature, this text can serve as an introduction to permutation groups in a course at the graduate or advanced undergraduate level, as well as for self-study.
This text is a comprehensive pedagogical presentation of the theory of representation of finite and compact Lie groups. It considers both the general theory and representation of specific groups. Representation theory is discussed on the following types of groups: finite groups of rotations, permutation groups, and classical compact semisimple Lie groups. Along the way, the structure theory of the compact semisimple Lie groups is exposed. This is aimed at research mathematicians and graduate students studying group theory.
This book studies dihedral groups, dicyclic groups, other finite subgroups of the 3-dimensional sphere, and the 2-fold extensions of the symmetric group on 4 letters from the point of view of decorated string diagrams of permutations. These are our metaphorical quipu. As you might expect, the book is replete with illustrations. In (almost) all cases, explicit diagrams for the elements of the group are given. The exception is the binary icosahedral group in which only the generators and relations are exhibited.
Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.
The aim of this text is to present some of the key results in the representation theory of finite groups. In order to keep the account reasonably elementary, so that it can be used for graduate-level courses, Professor Alperin has concentrated on local representation theory, emphasising module theory throughout. In this way many deep results can be obtained rather quickly. After two introductory chapters, the basic results of Green are proved, which in turn lead in due course to Brauer's First Main Theorem. A proof of the module form of Brauer's Second Main Theorem is then presented, followed by a discussion of Feit's work connecting maps and the Green correspondence. The work concludes with a treatment, new in part, of the Brauer-Dade theory. As a text, this book contains ample material for a one semester course. Exercises are provided at the end of most sections; the results of some are used later in the text. Representation theory is applied in number theory, combinatorics and in many areas of algebra. This book will serve as an excellent introduction to those interested in the subject itself or its applications.