Download Free Permanent Magnet Synchronous And Brushless Dc Motor Drives Book in PDF and EPUB Free Download. You can read online Permanent Magnet Synchronous And Brushless Dc Motor Drives and write the review.

Despite two decades of massive strides in research and development on control strategies and their subsequent implementation, most books on permanent magnet motor drives still focus primarily on motor design, providing only elementary coverage of control and converters. Addressing that gap with information that has largely been disseminated only in journals and at conferences, Permanent Magnet Synchronous and Brushless DC Motor Drives is a long-awaited comprehensive overview of power electronic converters for permanent magnet synchronous machines and control strategies for variable-speed operation. It introduces machines, power devices, inverters, and control, and addresses modeling, implementation, control strategies, and flux weakening operations, as well as parameter sensitivity, and rotor position sensorless control. Suitable for both industrial and academic audiences, this book also covers the simulation, low cost inverter topologies, and commutation torque ripple of PM brushless DC motor drives. Simulation of the motor drives system is illustrated with MATLAB® codes in the text. This book is divided into three parts—fundamentals of PM synchronous and brushless dc machines, power devices, inverters; PM synchronous motor drives, and brushless dc motor drives. With regard to the power electronics associated with these drive systems, the author: Explores use of the standard three-phase bridge inverter for driving the machine, power factor correction, and inverter control Introduces space vector modulation step by step and contrasts with PWM Details dead time effects in the inverter, and its compensation Discusses new power converter topologies being considered for low-cost drive systems in PM brushless DC motor drives This reference is dedicated exclusively to PM ac machines, with a timely emphasis on control and standard, and low-cost converter topologies. Widely used for teaching at the doctoral level and for industrial audiences both in the U.S. and abroad, it will be a welcome addition to any engineer’s library.
An advanced introduction to the simulation and hardware implementation of BLDC motor drives A thorough reference on the simulation and hardware implementation of BLDC motor drives, this book covers recent advances in the control of BLDC motor drives, including intelligent control, sensorless control, torque ripple reduction and hardware implementation. With the guidance of the expert author team, readers will understand the principle, modelling, design and control of BLDC motor drives. The advanced control methods and new achievements of BLDC motor drives, of interest to more advanced readers, are also presented. Focuses on the control of PM brushless DC motors, giving readers the foundations to the topic that they can build on through more advanced reading Systematically guides readers through the subject, introducing basic operational principles before moving on to advanced control algorithms and implementations Covers special issues, such as sensorless control, intelligent control, torque ripple reduction and hardware implementation, which also have applications to other types of motors Includes presentation files with lecture notes and Matlab 7 coding on a companion website for the book
A presentation of the theory of brushless d.c. drives to help engineers appreciate the potential of such motors and apply them more widely, by taking into account developments in permanent-magnet materials, power semiconductors, electronic control and motor design.
Brushless Motors: Magnetic Design, Performance and Control is an outgrowth of the author's two previous books on this subject. This book contains significant additional material covering further aspects of magnetic design, performance, and electrical control. The primary goal of this book is to meet the needs of working engineers who have little or no experience in electric motor design and control. The book starts with basic concepts, provides intuitive reasoning for them, and gradually builds a set of understandable concepts that foster the development of usable knowledge. This book strives to provide a basis of knowledge that non-experts can use to develop practical expertise, making them more productive in their work and allowing them to productively explore other approaches to motor design, performance, and electrical control.
The importance of permanent magnet (PM) motor technology and its impact on electromechanical drives has grown exponentially since the publication of the bestselling second edition. The PM brushless motor market has grown considerably faster than the overall motion control market. This rapid growth makes it essential for electrical and electromechanical engineers and students to stay up-to-date on developments in modern electrical motors and drives, including their control, simulation, and CAD. Reflecting innovations in the development of PM motors for electromechanical drives, Permanent Magnet Motor Technology: Design and Applications, Third Edition demonstrates the construction of PM motor drives and supplies ready-to-implement solutions to common roadblocks along the way. This edition supplies fundamental equations and calculations for determining and evaluating system performance, efficiency, reliability, and cost. It explores modern computer-aided design of PM motors, including the finite element approach, and explains how to select PM motors to meet the specific requirements of electrical drives. The numerous examples, models, and diagrams provided in each chapter facilitate a lucid understanding of motor operations and characteristics. This 3rd edition of a bestselling reference has been thoroughly revised to include: Chapters on high speed motors and micromotors Advances in permanent magnet motor technology Additional numerical examples and illustrations An increased effort to bridge the gap between theory and industrial applications Modified research results The growing global trend toward energy conservation makes it quite possible that the era of the PM brushless motor drive is just around the corner. This reference book will give engineers, researchers, and graduate-level students the comprehensive understanding required to develop the breakthroughs that will push this exciting technology to the forefront.
Interest in permanent magnet synchronous machines (PMSMs) is continuously increasing worldwide, especially with the increased use of renewable energy and the electrification of transports. This book contains the successful submissions of fifteen papers to a Special Issue of Energies on the subject area of “Permanent Magnet Synchronous Machines”. The focus is on permanent magnet synchronous machines and the electrical systems they are connected to. The presented work represents a wide range of areas. Studies of control systems, both for permanent magnet synchronous machines and for brushless DC motors, are presented and experimentally verified. Design studies of generators for wind power, wave power and hydro power are presented. Finite element method simulations and analytical design methods are used. The presented studies represent several of the different research fields on permanent magnet machines and electric drives.
Explaining techniques for magnetic modelling and circuit analysis, this book shows how magnetic circuit analysis applies to motor design. It describes the major aspects of motor operation and design, and develops design equations for radial flux and axial flux motors. It is intended for electrical, electronics and mechanical engineers.
This book reports the state of the art of energy-efficient electrical motor driven system technologies, which can be used now and in the near future to achieve significant and cost-effective energy savings. It includes the recent developments in advanced electrical motor end-use devices (pumps, fans and compressors) by some of the largest manufacturers. Policies and programs to promote the large scale penetration of energy-efficient technologies and the market transformation are featured in the book, describing the experiences carried out in different parts of the world. This extensive coverage includes contributions from relevant institutions in the Europe, North America, Latin America, Africa, Asia, Australia and New Zealand.
Variable speed is one of the important requirements in most of the electric drives. Earlier dc motors were the only drives that were used in industries requiring - eration over a wide range of speed with step less variation, or requiring fine ac- racy of speed control. Such drives are known as high performance drives. AC - tors because of being highly coupled non-linear devices can not provide fast dynamic response with normal controls. However, recently, because of ready availability of power electronic devices, and digital signal processors ac motors are beginning to be used for high performance drives. Field oriented control or vector control has made a fundamental change with regard to dynamic perfo- ance of ac machines. Vector control makes it possible to control induction or s- chronous motor in a manner similar to control scheme used for the separately - cited dc motor. Recent advances in artificial intelligence techniques have also contributed in the improvement in performance of electric drives. This book presents a comprehensive view of high performance ac drives. It may be considered as both a text book for graduate students and as an up-to-date monograph. It may also be used by R & D professionals involved in the impro- ment of performance of drives in the industries. The book will also be beneficial to the researchers pursuing work on sensorless and direct torque control of electric drives as up-to date references in these topics are provided.
Brushless permanent-magnet motors provide simple, low maintenance, and easily controlled mechanical power. Written by two leading experts on the subject, this book offers the most comprehensive guide to the design and performance of brushless permanent-magnetic motors ever written. Topics range from electrical and magnetic design to materials and control. Throughout, the authors stress both practical and theoretical aspects of the subject, and relate the material to modern software-based techniques for design and analysis. As new magnetic materials and digital power control techniques continue to widen the scope of the applicability of such motors, the need for an authoritative overview of the subject becomes ever more urgent. Design of Brushless Permanent-Magnet Motors fits the bill and will be read by students and researchers in electric and electronic engineering.