Download Free Peripheral Hearing Mechanisms In Reptiles And Birds Book in PDF and EPUB Free Download. You can read online Peripheral Hearing Mechanisms In Reptiles And Birds and write the review.

Reptiles and birds have highly diverse hearing organs. Data on a huge amount of information concerning all aspects of structural, neurophysiological and anatomical aspects are reviewed as published up to mid-1988: in addition a good deal of yet unpublished data from the author's laboratory are included. The literature on hearing is scattered through a great variety of zoological, medical, psychological, psychoacoustical and bioengineering journals: this book condenses all important findings in one source.
Birds and reptiles have long fascinated investigators studying hearing and the auditory system. The highly evolved auditory inner ear of birds and reptiles shares many characteristics with the ear of mammals. Thus, the two groups are essential in understanding the form and function of the vertebrate and mammalian auditory systems. Comparative Hearing: Birds and Reptiles covers the broad range of our knowledge of hearing and acoustic communication in both groups of vertebrates. This volume addresses the many similarities in their auditory systems, as well as the known significant differences about hearing in the two groups.
Birds and reptiles have long fascinated investigators studying hearing and the auditory system. The highly evolved auditory inner ear of birds and reptiles shares many characteristics with the ear of mammals. Thus, the two groups are essential in understanding the form and function of the vertebrate and mammalian auditory systems. Comparative Hearing: Birds and Reptiles covers the broad range of our knowledge of hearing and acoustic communication in both groups of vertebrates. This volume addresses the many similarities in their auditory systems, as well as the known significant differences about hearing in the two groups.
In this definitive work, Ernest Glen Wever establishes the evolutionary importance of the reptile ear as the origin of the higher type of auditory apparatus shared by man and the mammals. Tracing the development of the auditory receptor in the living reptiles, he examines the use of a variety of mechanisms and principles of action by that receptor. While some of the material in this book has appeared previously in journal articles, most of it is presented here for the first time. Basing this study on his twenty years of research at Princeton's Auditory Research Laboratories, Professor Wever treats in anatomical and functional detail the auditory mechanism in about 250 species and subspecies of reptiles. The anatomical treatment rests on dissections and histological examinations of the ears in serial section, and portrays the relevant features in drawings that represent particular views of reconstructions. The author evaluates the performance of thesse ears electrophysiologically, in terms of the electrical potentials of the cochlea, paying particular attention to problems of the transmission of vibrations inward to the cochlea and the actions there in stimulating the sensory cells. Professor Wever finds that the cochlea emerged independently from the non-auditory labyrinth in three different vertebrate groups: fishes, amphibians, and reptiles. It was among the reptiles, however, that the vertebrate ear took on a more advanced configuration from which it further evolved along separate lineages in the birds and mammals. Ernest Glen Wever is Eugene Higgins Professor of Psychology Emeritus at Princeton University. Originally published in 1978. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
The cochlea does not just pick up sound, it also produces sounds of low intensity called Otoacoustic Emissions (OAEs). Sounds produced by healthy ears – either spontaneously or in response to stimuli - allow researchers and clinicians to study hearing and cochlear function noninvasively in both animals and humans. This book presents the first serious review of the biological basis of these otoacoustic emissions.
The function of vertebrate hearing is served by a surprising variety of sensory structures in the different groups of fish, amphibians, reptiles, birds, and mammals. This book discusses the origin, specialization, and functional properties of sensory hair cells, beginning with environmental constraints on acoustic systems and addressing in detail the evolutionary history behind modern structure and function in the vertebrate ear. Taking a comparative approach, chapters are devoted to each of the vertebrate groups, outlining the transition to land existence and the further parallel and independent adaptations of amniotic groups living in air. The volume explores in depth the specific properties of hair cells that allowed them to become sensitive to sound and capable of analyzing sounds into their respective frequency components. Evolution of the Vertebrate Auditory System is directed to a broad audience of biologists and clinicians, from the level of advanced undergraduate students to professionals interested in learning more about the evolution, structure, and function of the ear.
To develop a science of hearing that is intellectu The five-day conference was held at the Mote ally satisfying we must first integrate the diverse, Marine Laboratory in Sarasota, Florida, May - extensive body of comparative research into an 24, 1990. The invited participants came from the evolutionary context. The need for this integra fields of comparative anatomy, physiology, biophys tion, and a conceptual framework in which it could ics, animal behavior, psychophysics, evolutionary be structured, were demonstrated in landmark biology, ontogeny, and paleontology. Before the papers by van Bergeijk in 1967 and Wever in 1974. conference, preliminary manuscripts of the invited However, not since 1965, when the American papers were distributed to all participants. This facilitated - even encouraged - discussions through Society of Zoologists sponsored an evolutionary conference entitled ''The Vertebrate Ear;' has there out the conference which could be called, among other things, "lively. " The preview of papers, along been a group effort to assemble and organize our current knowledge on the evolutionary-as with the free exchange of information and opinion, opposed to comparative-biology of hearing. also helped improve the quality and consistency of In the quarter century since that conference the final manuscripts included in this volume. there have been major changes in evolutionary In addition to the invited papers, several studies concepts (e. g. , punctuated equilibrium), in sys were presented as posters during evening sessions.
The workshop brought together experts in genetics, molecular and cellular biology, physiology, engineering, physics, mathematics, audiology and medicine to present current work and to review the critical issues of inner ear function. A special emphasis of the workshop was on analytical model based studies. Experimentalists and theoreticians thus shared their points of view. The topics ranged from consideration of the hearing organ as a system to the study and modeling of individual auditory cells including molecular aspects of function. Some of the topics in the book are: motor proteins in hair cells; mechanical and electrical aspects of transduction by motor proteins; function of proteins in stereocilia of hair cells; production of acoustic force by stereocilia, mechanical properties of hair cells and the organ of Corti; mechanical vibration of the organ of Corti; wave propagation in tissue and fluids of the inner ear; sound amplification in the cochlea; critical oscillations; cochlear nonlinearity, and mechanisms for the production of otoacoustic emissions. This book will be invaluable to researchers and students in auditory science.
Papers Based on a Workshop Given at the Joint Meeting of the Acoust. Soc. of America and Japan, Held November 28 - December 2, 1978 in Honululu