Download Free Periodic Solutions Of Singular Lagrangian Systems Book in PDF and EPUB Free Download. You can read online Periodic Solutions Of Singular Lagrangian Systems and write the review.

Thismonographdealswiththeexistenceofperiodicmotionsof Lagrangiansystemswith ndegreesoffreedom ij + V'(q) =0, where Visasingularpotential. Aprototypeofsuchaproblem, evenifitisnottheonlyphysicallyinterestingone, istheKepler problem . q 0 q+yqr= . This, jointlywiththemoregeneralN-bodyproblem, hasalways beentheobjectofagreatdealofresearch. Mostofthoseresults arebasedonperturbationmethods, andmakeuseofthespecific featuresoftheKeplerpotential. OurapproachismoreonthelinesofNonlinearFunctional Analysis:ourmainpurposeistogiveafunctionalframefor systemswithsingularpotentials, includingtheKeplerandthe N-bodyproblemasparticularcases. PreciselyweuseCritical PointTheorytoobtainexistenceresults, qualitativeinnature, whichholdtrueforbroadclassesofpotentials. Thishighlights thatthevariationalmethods, whichhavebeenemployedtoob tainimportantadvancesinthestudyofregularHamiltonian systems, canbesuccessfallyusedtohandlesingularpotentials aswell. Theresearchonthistopicisstillinevolution, andtherefore theresultswewillpresentarenottobeintendedasthefinal ones. Indeedamajorpurposeofourdiscussionistopresent methodsandtoolswhichhavebeenusedinstudyingsuchprob lems. Vlll PREFACE Partofthematerialofthisvolumehasbeenpresentedina seriesoflecturesgivenbytheauthorsatSISSA, Trieste, whom wewouldliketothankfortheirhospitalityandsupport. We wishalsotothankUgoBessi, PaoloCaldiroli, FabioGiannoni, LouisJeanjean, LorenzoPisani, EnricoSerra, KazunakaTanaka, EnzoVitillaroforhelpfulsuggestions. May26,1993 Notation n 1. For x, yE IR, x. ydenotestheEuclideanScalarproduct, and IxltheEuclideannorm. 2. meas(A)denotestheLebesguemeasureofthesubset Aof n IR - 3. Wedenoteby ST =[0,T]/{a, T}theunitarycirclepara metrizedby t E[0,T]. Wewillalsowrite SI= ST=I. n 1 n 4. Wewillwrite sn = {xE IR + : Ixl =I}andn = IR \{O}. n 5. Wedenoteby LP([O, T], IR),1~ p~+00,theLebesgue spaces, equippedwiththestandardnorm lIulip. l n l n 6. H (ST, IR)denotestheSobolevspaceof u E H,2(0, T; IR) suchthat u(O) = u(T). Thenormin HIwillbedenoted by lIull2 = lIull~ + lIull~· 7. Wedenoteby(·1·)and11·11respectivelythescalarproduct andthenormoftheHilbertspace E. 8. For uE E, EHilbertorBanachspace, wedenotetheball ofcenter uandradiusrby B(u, r) = {vE E: lIu- vii~ r}. Wewillalsowrite B = B(O, r). r 1 1 9. WesetA (n) = {uE H (St, n)}. k 10. For VE C (1Rxil, IR)wedenoteby V'(t, x)thegradient of Vwithrespectto x. l 11. Given f E C (M, IR), MHilbertmanifold, welet r = {uEM: f(u) ~ a}, f-l(a, b) = {uE E : a~ f(u) ~ b}. x NOTATION 12. Given f E C1(M, JR), MHilbertmanifold, wewilldenote by Zthesetofcriticalpointsof fon Mandby Zctheset Z U f-l(c, c). 13. Givenasequence UnE E, EHilbertspace, by Un --"" Uwe willmeanthatthesequence Unconvergesweaklyto u. 14. With £(E)wewilldenotethesetoflinearandcontinuous operatorson E. 15. With Ck''''(A, JR)wewilldenotethesetoffunctions ffrom AtoJR, ktimesdifferentiablewhosek-derivativeisHolder continuousofexponent0:. Main Assumptions Wecollecthere, forthereader'sconvenience, themainassump tionsonthepotential Vusedthroughoutthebook. (VO) VEC1(lRXO, lR), V(t+T, x)=V(t, X) V(t, x)ElRXO, (VI) V(t, x)
The book provides the most recent advances of Celestial Mechanics, as provided by high-level scientists working in this field. It covers theoretical investigations as well as applications to concrete problems. Outstanding review papers are included in the book and they introduce the reader to leading subjects, like the variational approaches to find periodic orbits and the space debris polluting the circumterrestrial space.
The book aims to provide an unifying view of a variety (a 'zoo') of mathematical models with some kind of singular nonlinearity, in the sense that it becomes infinite when the state variable approaches a certain point. Up to 11 different concrete models are analyzed in separate chapters. Each chapter starts with a discussion of the basic model and its physical significance. Then the main results and typical proofs are outlined, followed by open problems. Each chapter is closed by a suitable list of references. The book may serve as a guide for researchers interested in the modelling of real world processes.
This volume constitutes the proceedings of the International Conference on Dynamical Systems in Honor of Prof. Liao Shantao (1920-97). The Third World Academy of Sciences awarded the first ever mathematics prize in 1985 to Prof. Liao in recognition of his foundational work in differentiable dynamical systems and his work in periodic transformation of spheres. The conference was held in Beijing in August 1998. There were about 90 participants, and nearly 60 talks were delivered.The topics covered include differentiable dynamics, topological dynamics, hamiltonian dynamics, complex dynamics, ergodic and stochastic dynamics, and fractals theory. Dynamical systems is a field with many difficult problems, and techniques are being developed to deal with those problems. This volume contains original studies of great mathematical depth and presents some of the fascinating numerical experiments.
This text starts at the foundations of the field, and is accessible with some background in functional analysis. As such, the book is ideal for classroom of self study. The new material covered also makes this book a must read for researchers in the theory of critical points.
This proceedings volume is devoted to the interplay of symmetry and perturbation theory, as well as to cognate fields such as integrable systems, normal forms, n-body dynamics and choreographies, geometry and symmetry of differential equations, and finite and infinite dimensional dynamical systems. The papers collected here provide an up-to-date overview of the research in the field, and have many leading scientists in the field among their authors, including: D Alekseevsky, S Benenti, H Broer, A Degasperis, M E Fels, T Gramchev, H Hanssmann, J Krashil''shchik, B Kruglikov, D Krupka, O Krupkova, S Lombardo, P Morando, O Morozov, N N Nekhoroshev, F Oliveri, P J Olver, J A Sanders, M A Teixeira, S Terracini, F Verhulst, P Winternitz, B Zhilinskii. Sample Chapter(s). Foreword (101 KB). Chapter 1: Homogeneous Bi-Lagrangian Manifolds and Invariant Monge-Ampere Equations (415 KB). Contents: On Darboux Integrability (I M Anderson et al.); Computing Curvature without Christoffel Symbols (S Benenti); Natural Variational Principles (D Krupka); Fuzzy Fractional Monodromy (N N Nekhoroshev); Emergence of Slow Manifolds in Nonlinear Wave Equations (F Verhulst); Complete Symmetry Groups and Lie Remarkability (K Andriopoulos); Geodesically Equivalent Flat Bi-Cofactor Systems (K Marciniak); On the Dihedral N-Body Problem (A Portaluri); Towards Global Classifications: A Diophantine Approach (P van der Kamp); and other papers. Readership: Researchers and students (graduate/advanced undergraduates) in mathematics, applied mathematics, physics and nonlinear science.
This proceedings volume is devoted to the interplay of symmetry and perturbation theory, as well as to cognate fields such as integrable systems, normal forms, n-body dynamics and choreographies, geometry and symmetry of differential equations, and finite and infinite dimensional dynamical systems. The papers collected here provide an up-to-date overview of the research in the field, and have many leading scientists in the field among their authors, including: D Alekseevsky, S Benenti, H Broer, A Degasperis, M E Fels, T Gramchev, H Hanssmann, J Krashil'shchik, B Kruglikov, D Krupka, O Krupkova, S Lombardo, P Morando, O Morozov, N N Nekhoroshev, F Oliveri, P J Olver, J A Sanders, M A Teixeira, S Terracini, F Verhulst, P Winternitz, B Zhilinskii.
The lectures in this 2005 book are intended to bring young researchers to the current frontier of knowledge in geometrical mechanics and dynamical systems.
This volume contains the proceedings of a NATO Advanced Research Workshop on Periodic Solutions of Hamiltonian Systems held in II Ciocco, Italy on October 13-17, 1986. It also contains some papers that were an outgrowth of the meeting. On behalf of the members of the Organizing Committee, who are also the editors of these proceedings, I thank all those whose contributions made this volume possible and the NATO Science Committee for their generous financial support. Special thanks are due to Mrs. Sally Ross who typed all of the papers in her usual outstanding fashion. Paul H. Rabinowitz Madison, Wisconsin April 2, 1987 xi 1 PERIODIC SOLUTIONS OF SINGULAR DYNAMICAL SYSTEMS Antonio Ambrosetti Vittorio Coti Zelati Scuola Normale Superiore SISSA Piazza dei Cavalieri Strada Costiera 11 56100 Pisa, Italy 34014 Trieste, Italy ABSTRACT. The paper contains a discussion on some recent advances in the existence of periodic solutions of some second order dynamical systems with singular potentials. The aim of this paper is to discuss some recent advances in th.e existence of periodic solutions of some second order dynamical systems with singular potentials.