Download Free Periodic Mesoporous Organosilicas With Functional Chromophores Book in PDF and EPUB Free Download. You can read online Periodic Mesoporous Organosilicas With Functional Chromophores and write the review.

This book provides a comprehensive overview of the fundamental properties, preparation routes and applications of a novel class of organic–inorganic nanocomposites known as periodic mesoporous organosilicas (PMOs). Mesoporous silicas are amorphous inorganic materials which have silicon and oxygen atoms in their framework with pore size ranging from 2 to 50 nm. They can be synthesized from surfactants as templates for the polycondensation of various silicon sources such as tetraalkoxysilane. In general, mesoporous silica materials possess high surface areas, tunable pore diameters, high pore volumes and well uniformly organized porosity. The stable chemical property and the variable ability for chemical modification makes them ideal for many applications such as drug carrier, sensor, separation, catalyst, and adsorbent. Among such mesoporous silicas, in 1999, three groups in Canada, Germany, and Japan independently developed a novel class of organic–inorganic nanocomposites known as periodic mesoporous organosilicas (PMOs). The organic functional groups in the frameworks of these solids allow tuning of their surface properties and modification of the bulk properties of the material. The book discusses the properties of PMOs, their preparation, different functionalities and morphology, before going on to applications in fields such as catalysis, drug delivery, sensing, optics, electronic devices, environmental applications (gas sensing and gas adsorption), biomolecule adsorption and chromatography. The book provides fundamental understanding of PMOs and their advanced applications for general materials chemists and is an excellent guide to these promising novel materials for graduate students majoring in chemical engineering, chemistry, polymer science and materials science and engineering.
This proceedings volume contains selected and peer-reviewed original oral and poster contributions to be presented at the 5th International Symposium on Nanoporous Materials, Vancouver, Canada, May 25OCo28, 2008. It presents recent scientific advances in the area of nanoporous materials, especially those with ordered pores of sizes between 1 and 50 nm, their synthesis, characterization and applications in adsorption, catalysis, bio-related processes, environmental cleanup and nanotechnology. A unique feature of this volume is the wide variety of nanoporous materials covered, ranging from ordered silica nanostructures, silicas with incorporated organic and inorganic species, ordered nanoporous carbons and polymers, metal organic frameworks, nanostructured catalysts to nanoporous films, membranes and monoliths. This proceedings volume reflects the current trends and advances in the field of nanomaterials, which will certainly continue to attract the attention of materials scientists around the globe. It will therefore be a valuable reference for materials scientists, chemists and physicists working in academia, national and industrial laboratories. Sample Chapter(s). Chapter 1: New Routes for Improving Hydrothermal Stability of Ordered Mesoporous Materials and Synthesis of Mesoporous Zeolites (497 KB). Contents: Mesoporous Silicas; Si-Containing Mesoporous Inorganic Frameworks; Mesoporous Zeolites; Mesoporous Organosilicas; Non-siliceous Inorganic Nanomaterials; Porous Polymers and Polymer/Inorganic Nanocomposites; Mesoporous Carbons; Nanoparticles Assembly; Adsorption on Nanostructured Materials; Nanostructured Catalysts; Catalytic Applications of Nanoporous Materials; Environmental Applications of Nanoporous Materials; Bio-related Applications of Mesoporous Materials. Readership: Graduate students, academics and researchers in the field of nanoporous materials."
This proceedings volume contains selected and peer-reviewed original oral and poster contributions to be presented at the 5th International Symposium on Nanoporous Materials, Vancouver, Canada, May 25-28, 2008. It presents recent scientific advances in the area of nanoporous materials, especially those with ordered pores of sizes between 1 and 50 nm, their synthesis, characterization and applications in adsorption, catalysis, bio-related processes, environmental cleanup and nanotechnology. A unique feature of this volume is the wide variety of nanoporous materials covered, ranging from ordered silica nanostructures, silicas with incorporated organic and inorganic species, ordered nanoporous carbons and polymers, metal organic frameworks, nanostructured catalysts to nanoporous films, membranes and monoliths. This proceedings volume reflects the current trends and advances in the field of nanomaterials, which will certainly continue to attract the attention of materials scientists around the globe. It will therefore be a valuable reference for materials scientists, chemists and physicists working in academia, national and industrial laboratories.
Mesoporous materials are a class of molecules with a large and uniform pore size, highly regular nanopores, and a large surface area. This book is devoted to all aspects and types of these materials and describes, in an in-depth and systematic manner, the step-by-step synthesis and its mechanism, as well as the characterization, morphology control, hybridization, and applications, of mesoporous molecular sieves. In so doing, it covers silicates, metal-doped silicates, nonsilicates, and organic-inorganic hybrids. Although the emphasis is on synthesis, the expert authors also discuss characterization and applications, ranging from catalysis and biochemistry to optics and the use of these materials as templates for nanomaterial synthesis. Both the fundamentals and the latest research results are covered, ensuring that this monograph serves as a reference for researchers in and newcomers to the field.
Chemistry of Silica and Zeolite-Based Materials covers a wide range of topics related to silica-based materials from design and synthesis to applications in different fields of science and technology. Since silica is transparent and inert to the light, it is a very attractive host material for constructing artificial photosynthesis systems. As an earth-abundant oxide, silica is an ideal and basic material for application of various oxides, and the science and technology of silica-based materials are fundamentally important for understanding other oxide-based materials. The book examines nanosolvation and confined molecules in silica hosts, catalysis and photocatalysis, photonics, photosensors, photovoltaics, energy, environmental sciences, drug delivery, and health. Written by a highly experienced and internationally renowned team from around the world, Chemistry of Silica and Zeolite-Based Materials is ideal for chemists, materials scientists, chemical engineers, physicists, biologists, biomedical sciences, environmental scientists, toxicologists, and pharma scientists. --- "The enormous versatility of silica for building a large variety of materials with unique properties has been very well illustrated in this book.... The reader will be exposed to numerous potential applications of these materials – from photocatalytic, optical and electronic applications, to chemical reactivity in confined spaces and biological applications. This book is of clear interest not only to PhD students and postdocs, but also to researchers in this field seeking an understanding of the possible applications of meso and microporous silica-derived materials." - Professor Avelino Corma, Institute of Chemical Technology (ITQ-CSIC) and Polytechnical University of Valencia, Spain - Discusses the most important advances in various fields using silica materials, including nanosolvation and confined molecules in silica hosts, catalysis and photocatalysis, and other topics - Written by a global team of experts from a variety of science and technology disciplines - Ideal resource for chemists, materials scientists, and chemical engineers working with oxide-based materials
Nanoporous Materials for Molecule Separation and Conversion cover the topic with sections on nanoporous material synthesis and characterization, nanoporous materials for molecule separation, and nanoporous materials for energy storage and renewable energy. Typical nanoporous materials including carbon, zeolite, silica and metal-organic frameworks and their applications in molecule separation and energy related applications are covered. In addition, the fundamentals of molecule adsorption and molecule transport in nanoporous materials are also included, providing readers with a stronger understanding of the principles and topics covered. This is an important reference for anyone exploring nanoporous materials, including researchers and postgraduate students in materials science and chemical engineering. In addition, it is ideal for industry professionals working on a wide range of applications for nanoporous materials. - Outlines the fundamental principles of nanoporous materials design - Explores the application of nanoporous materials in important areas such as molecule separation and energy storage - Gives real-life examples of how nanoporous materials are used in a variety of industry sector
This comprehensive three-volume handbook brings together a review of the current state together with the latest developments in sol-gel technology to put forward new ideas. The first volume, dedicated to synthesis and shaping, gives an in-depth overview of the wet-chemical processes that constitute the core of the sol-gel method and presents the various pathways for the successful synthesis of inorganic and hybrid organic-inorganic materials, bio- and bio-inspired materials, powders, particles and fibers as well as sol-gel derived thin films, coatings and surfaces. The second volume deals with the mechanical, optical, electrical and magnetic properties of sol-gel derived materials and the methods for their characterization such as diffraction methods and nuclear magnetic resonance, infrared and Raman spectroscopies. The third volume concentrates on the various applications in the fields of membrane science, catalysis, energy research, biomaterials science, biomedicine, photonics and electronics.
This comprehensive three-volume handbook brings together a review of the current state together with the latest developments in sol-gel technology to put forward new ideas. The first volume, dedicated to synthesis and shaping, gives an in-depth overview of the wet-chemical processes that constitute the core of the sol-gel method and presents the various pathways for the successful synthesis of inorganic and hybrid organic-inorganic materials, bio- and bio-inspired materials, powders, particles and fibers as well as sol-gel derived thin films, coatings and surfaces. The second volume deals with the mechanical, optical, electrical and magnetic properties of sol-gel derived materials and the methods for their characterization such as diffraction methods and nuclear magnetic resonance, infrared and Raman spectroscopies. The third volume concentrates on the various applications in the fields of membrane science, catalysis, energy research, biomaterials science, biomedicine, photonics and electronics.
Luminescence Thermometry: Methods, Materials, and Applications presents the state-of-the art applications of luminescence thermometry, giving a detailed explanation of luminescence spectroscopic schemes for the read-out of temperature, while also describing the diverse materials that are capable of sensing temperature via luminescence. Chapters cover the fundamentals of temperature, traditional thermometers and their figures of merit, a concise description of optical thermometry methods, luminescence and instrumentation, and an explanation of the ways in which increases in temperature quench luminescence. Additional sections focus on materials utilized for luminescence thermometry and the broad range of applications for luminescence thermometry, including temperature measurement at the nanoscale and the application of multifunctional luminescent materials. - Provides an overview of luminescence thermometry applications, including high-temperature, biomedical, nanoscale and multifunctional - Delves into luminescence thermometry by materials group, including Rare-earth and transition Metal Ion Doped, Semiconductors, Quantum Dots and Organic materials - Gives a concise introduction of the latest methods of temperature measurement, including luminescence spectroscopic schemes and methods of analysis