Download Free Pericyte Biology Novel Concepts Book in PDF and EPUB Free Download. You can read online Pericyte Biology Novel Concepts and write the review.

This volume explores novel concepts of pericyte biology. The present book is an attempt to describe the most recent developments in the area of pericyte biology which is one of the emergent hot topics in the field of molecular and cellular biology today. Here, we present a selected collection of detailed chapters on what we know so far about the pericytes. Together with its companion volumes Pericyte Biology in Different Organs and Pericyte Biology in Disease, Pericyte Biology - Novel Concepts presents a comprehensive update on the latest information and most novel functions attributed to pericytes. To those researchers newer to this area, it will be useful to have the background information on these cells' unique history. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cells and researchers or clinicians involved with specific diseases.
The present book is an attempt to describe the most recent developments in the area of pericyte biology which is one of the emergent hot topics in the field of molecular and cellular biology today. Here, we present a selected collection of thirteen detailed chapters on what we know so far about pericytes in distinct organs in physiological and pathological conditions. Further, it provides an update on the most novel functions attributed to these cells and will introduce a newer generation of researchers and scientists to the importance of these cells, ranging from their discovery in different organs through current state-of-the-science. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cells and vascular research. This volume explores pericytes' physiologic roles in different tissues, ranging from the pancreas, lungs and liver through skeletal muscle, gut, retina and more. Together with its companion volumes Pericyte Biology in Disease and Pericyte Biology - Novel Concepts, Pericyte Biology in Different Organs presents a comprehensive update on the latest information and most novel functions attributed to pericytes. To those researchers newer to this area, it will be useful to have the background information on these cells' unique history. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cells and researchers or clinicians involved with specific organs.
This volume explores pericytes' roles under distinct pathological conditions, ranging from tumors, ALS, Alzheimer’s disease, Multiple Sclerosis, stroke, diabetes, atherosclerosis, muscular dystrophies and more. Together with its companion volumes Pericyte Biology in Different Organs and Pericyte Biology – Novel Concepts, Pericyte Biology in Disease presents a comprehensive update on the latest information and most novel functions attributed to pericytes. To those researchers newer to this area, it will be useful to have the background information on these cells' unique history. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cell biology and clinicians involved with these specific diseases.
The present book is an attempt to describe the most recent developments in the area of pericyte biology which is one of the emergent hot topics in the field of molecular and cellular biology today. Here, we present a selected collection of thirteen detailed chapters on what we know so far about pericytes in distinct organs in physiological and pathological conditions. Further, it provides an update on the most novel functions attributed to these cells and will introduce a newer generation of researchers and scientists to the importance of these cells, ranging from their discovery in different organs through current state-of-the-science. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cells and vascular research. This volume explores pericytes' physiologic roles in different tissues, ranging from the pancreas, lungs and liver through skeletal muscle, gut, retina and more. Together with its companion volumes Pericyte Biology in Disease and Pericyte Biology – Novel Concepts, Pericyte Biology in Different Organs presents a comprehensive update on the latest information and most novel functions attributed to pericytes. To those researchers newer to this area, it will be useful to have the background information on these cells' unique history. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cells and researchers or clinicians involved with specific organs.
Pericytes were originally discovered and named more than hundred years ago as contractile cells around the blood vessel endothelial cells. Due to the lack of exclusive markers, pericytes are now defined by a combination of location, morphology and gene expression. Pericytes are attracting increasing attention as important regulators during development and during normal and disturbed organ function. In recent years, remarkable progress has been made in the identification and characterization of pericytes subpopulations and their amazing functions using state-of-art techniques. These advantages facilitated identification of molecular basis of interaction between these cells with several other more well studied cell types, and revealed key signals derived from pericytes involved in homeostasis, regeneration, and disease regulation. In the last ten years, several unexpected roles of pericytes have been discovered. It has been demonstrated that pericytes from different tissues differ in their properties as well as functions. Even more, pericytes are heterogeneous also within the same organ. This book is will describe the major contributions of pericytes to different organs biology in physiological and pathological conditions. The book will teach the readers about this so special cell type that 10 years ago was almost completely forgotten, and it was associated basically only with vascular stability. Recently, it become a very hot topic to work in. Several articles in Nature, Science and Cell have been and are being currently published about this cell type. These recent works are revealing how important those cells are for before unimaginable biological processes. Thus, this book will update us on what are the most novel functions attributed to these cells. Also, will introduce to the young generation all the history about these cells from when they were discovered in different organs till where we are now in this field. So it will be a great book for both cell biology students as well as researchers that will have an update on these cells biology in different organs.
This volume discusses novel concepts in cancer biology, focusing on different factors that affect the tumor microenvironment. Topics covered include sex-based differences in the tumor microenironment, dormancy in the tumor microenvironment, the influence of obesity on the tumor microenvironment, and much more. Taken alongside its companion volumes, Tumor Microenvironment: Novel Concepts covers the latest research on various aspects of the tumor microenvironment, as well as future directions. Useful for introducing the newer generation of researchers to the history of how scientists studied the tumor microenvironment as well as how this knowledge is currently applied for cancer treatments, it will be essential reading for advanced cell biology and cancer biology students, as well as researchers seeking an update on research on the tumor microenvironment.
Now in its fifth edition, Principles of Tissue Engineering has been the definite resource in the field of tissue engineering for more than a decade. The fifth edition provides an update on this rapidly progressing field, combining the prerequisites for a general understanding of tissue growth and development, the tools and theoretical information needed to design tissues and organs, as well as a presentation by the world's experts of what is currently known about each specific organ system. As in previous editions, this book creates a comprehensive work that strikes a balance among the diversity of subjects that are related to tissue engineering, including biology, chemistry, material science, and engineering, among others, while also emphasizing those research areas that are likely to be of clinical value in the future. This edition includes greatly expanded focus on stem cells, including induced pluripotent stem (iPS) cells, stem cell niches, and blood components from stem cells. This research has already produced applications in disease modeling, toxicity testing, drug development, and clinical therapies. This up-to-date coverage of stem cell biology and the application of tissue-engineering techniques for food production – is complemented by a series of new and updated chapters on recent clinical experience in applying tissue engineering, as well as a new section on the emerging technologies in the field. - Organized into twenty-three parts, covering the basics of tissue growth and development, approaches to tissue and organ design, and a summary of current knowledge by organ system - Introduces a new section and chapters on emerging technologies in the field - Full-color presentation throughout
This reference work presents the basic principles of angiogenesis induction, including the roles of signaling factors such as hypoxia-inducible factors, biophysical stimulation and angiogenic cells. The book also covers lymphogenesis induction. Both the established fundamentals in the field as well as new trends in the vascularization of engineered tissues are discussed. These include pre-vascularization strategies using preparation of channeled scaffolds and preparation of decellularized blood vessel trees, approaches to inducing formation of microvasculature and approaches to inducing the growth of vascular networks. The authors expand on these concepts with current studies of dual-level approaches to engineer vascularized tissue composites. The book concludes with a discussion of current clinical approaches and the use of vascular grafts in the context of providing clinical practice with new tissue engineering strategies.
Novel Therapeutic Concepts for Targeting Glioma offers a comprehensive collection of current information and the upcoming possibilities for designing new therapies for Glioma by an array of experts ranging from Cell Biologists to Oncologists and Neurosurgeons. A variety of topics cover therapeutic strategies based on Cell Signaling, Gene Therapy, Drug Therapy and Surgical methods providing the reader with a unique opportunity to expand and advance his knowledge of the field.
The formation of blood vessels is an essential aspect of embryogenesis in vertebrates. It is a central feature of numerous post-embryonic processes, including tissue and organ growth and regeneration. It is also part of the pathology of tumour formation and certain inflammatory conditions. In recent years, comprehension of the molecular genetics of blood vessel formation has progressed enormously and studies in vertebrate model systems, especially the mouse and the zebrafish, have identified a common set of molecules and processes that are conserved throughout vertebrate embryogenesis while, in addition, highlighting aspects that may differ between different animal groups. The discovery in the past decade of the crucial role of new blood vessel formation for the development of cancers has generated great interest in angiogenesis (the formation of new blood vessels from pre-existing ones), with its major implications for potential cancer-control strategies. In addition, there are numerous situations where therapeutic treatments either require or would be assisted by vasculogenesis (the de novo formation of blood vessels). In particular, post-stroke therapies could include treatments that stimulate neovascularization of the affected tissues. The development of such treatments, however, requires thoroughly understanding the developmental properties of endothelial cells and the basic biology of blood vessel formation. While there are many books on angiogenesis, this unique book focuses on exactly this basic biology and explores blood vessel formation in connection with tissue development in a range of animal models. It includes detailed discussions of relevant cell biology, genetics and embryogenesis of blood vessel formation and presents insights into the cross-talk between developing blood vessels and other tissues. With contributions from vascular biologists, cell biologists and developmental biologists, a comprehensive and highly interdisciplinary volume is the outcome.