Download Free Performance Of Carbon Fiber Reinforced Polymer Cfrp Tendons And Their Use For Strengthening Of Prestressed Concrete Beams Book in PDF and EPUB Free Download. You can read online Performance Of Carbon Fiber Reinforced Polymer Cfrp Tendons And Their Use For Strengthening Of Prestressed Concrete Beams and write the review.

The in situ rehabilitation or upgrading of reinforced concrete members using bonded steel plates is an effective, convenient and economic method of improving structural performance. However, disadvantages inherent in the use of steel have stimulated research into the possibility of using fibre reinforced polymer (FRP) materials in its place, providing a non-corrosive, more versatile strengthening system.This book presents a detailed study of the flexural strengthening of reinforced and prestressed concrete members using fibre reinforces polymer composite plates. It is based to a large extent on material developed or provided by the consortium which studied the technology of plate bonding to upgrade structural units using carbon fibre / polymer composite materials. The research and trial tests were undertaken as part of the ROBUST project, one of several ventures in the UK Government's DTI-LINK Structural Composites Programme.The book has been designed for practising structural and civil engineers seeking to understand the principles and design technology of plate bonding, and for final year undergraduate and postgraduate engineers studying the principles of highway and bridge engineering and structural engineering. - Detailed study of the flexural strengthening of reinforced and prestressed concrete members using fibre reinforced polymer composites - Contains in-depth case histories
This book provides an overview of state-of-the-art methods in computational engineering for modeling and simulation. This proceedings volume includes a selection of refereed papers presented at the International Conference on Advances in Computational Mechanics (ACOME) 2017, which took place on Phu Quoc Island, Vietnam on August 2-4, 2017. The contributions highlight recent advances in and innovative applications of computational mechanics. Subjects covered include: biological systems; damage, fracture and failure; flow problems; multiscale multiphysics problems; composites and hybrid structures; optimization and inverse problems; lightweight structures; computational mechatronics; computational dynamics; numerical methods; and high-performance computing. The book is intended for academics, including graduate students and experienced researchers interested in state-of-the-art computational methods for solving challenging problems in engineering.
Fibre-reinforced polymer (FRP) reinforcement has been used in construction as either internal or external reinforcement for concrete structures in the past decade. This book provides the latest research findings related to the development, design and application of FRP reinforcement in new construction and rehabilitation works. The topics include FRP properties and bond behaviour, externally bonded reinforcement for flexure, shear and confinement, FRP structural shapes, durability, member behaviour under sustained loads, fatigue loads and blast loads, prestressed FRP tendons, structural strengthening applications, case studies, and codes and standards.
This volume highlights the latest advances, innovations, and applications in the field of FRP composites and structures, as presented by leading international researchers and engineers at the 10th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE), held in Istanbul, Turkey on December 8-10, 2021. It covers a diverse range of topics such as All FRP structures; Bond and interfacial stresses; Concrete-filled FRP tubular members; Concrete structures reinforced or pre-stressed with FRP; Confinement; Design issues/guidelines; Durability and long-term performance; Fire, impact and blast loading; FRP as internal reinforcement; Hybrid structures of FRP and other materials; Materials and products; Seismic retrofit of structures; Strengthening of concrete, steel, masonry and timber structures; and Testing. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.
Carbon fiber is an oft-referenced material that serves as a means to remove mass from large transport infrastructure. Carbon fiber composites, typically plastics reinforced with the carbon fibers, are key materials in the 21st century and have already had a significant impact on reducing CO2 emissions. Though, as with any composite material, the interface where each component meets, in this case the fiber and plastic, is critical to the overall performance. This text summarizes recent efforts to manipulate and optimize the interfacial interaction between these dissimilar materials to improve overall performance.
Many bridges are handling heavier loads than those expected at design, making it increasingly necessary to strengthen existing members or conduct repairs on damaged structural members. Carbon Fiber Reinforced Polymer (CFRP) materials have been broadly used to repair and strengthen reinforced concrete structures. Using CFRP materials as the strengthening material is an excellent solution because of their mechanical properties. CFRP has properties of high strength, corrosion resistance, and light weight. CFRP materials are being widely used for shear and flexural strengthening. Most studies have focused on uni-directional layout of CFRP strips in high shear regions of beams. Recent shear tests on full-scale I-girders have shown that the use of bi-directional CFRP layouts with CFRP anchors led to much higher shear strength increases than when using uni-directional layouts. The objective of the study is to determine the mechanism that governs shear strengthening of bridge girders using bi-directional CFRP and, in doing so, demonstrate the feasibility of using bi-directional CFRP for shear strengthening of large bridge I- and U-beams. Small-scale panel tests have been conducted to investigate parameters that influence the shear strength provided by bi-directional CFRP layouts. Panels were tested under compressive forces to simulate the compression struts that develop in the webs of I-beams. The applied loads generated bottle-shaped compressive struts. CFRP anchors were used to prevent early failure due to CFRP strip delamination from the panel surface. The panels, while not fully reproducing the boundary condition of girder webs, were tested ahead of full-scale girders to investigate a wide range of parameters in a cost-effective manner. The variables considered include the amount of CFRP and steel reinforcement, the inclination of CFRP fibers, and the layout and spacing of CFRP strips. The panel tests provide qualitative comparisons between the influence of the various parameters. The relative strength contributions of CFRP strips, steel stirrups, and concrete were evaluated.
.".. papers presented at the ACI Fall 2003 Convention, in Boston, Massachusetts"--P. iii.