Download Free Performance Modeling Loss Networks And Statistical Multiplexing Book in PDF and EPUB Free Download. You can read online Performance Modeling Loss Networks And Statistical Multiplexing and write the review.

This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of understanding the phenomenon of statistical multiplexing. The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in performance measures. Also presented are recent ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. In particular, the important concept of effective bandwidths as mappings from queueing level phenomena to loss network models is clearly presented along with a detailed presentation of loss network models and accurate approximations for large networks. Table of Contents: Introduction to Traffic Models and Analysis / Queues and Performance Analysis / Loss Models for Networks / Statistical Multiplexing
This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in computing performance measures. The monograph also covers stochastic network theory including Markovian networks. Recent results on network utility optimization and connections to stochastic insensitivity are discussed. Also presented are ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. In particular, the important concept of effective bandwidths as mappings from queueing level phenomena to loss network models is clearly presented along with a detailed discussion of accurate approximations for large networks.
This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in computing performance measures. The monograph also covers stochastic network theory including Markovian networks. Recent results on network utility optimization and connections to stochastic insensitivity are discussed. Also presented are ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. In particular, the important concept of effective bandwidths as mappings from queueing level phenomena to loss network models is clearly presented along with a detailed discussion of accurate approximations for large networks. Table of Contents: Introduction to Traffic Models and Analysis / Queues and Performance Analysis / Loss Models for Networks / Stochastic Networks and Insensitivity / Statistical Multiplexing
This book is an introduction to Markov chain modeling with applications to communication networks. It begins with a general introduction to performance modeling in Chapter 1 where we introduce different performance models. We then introduce basic ideas of Markov chain modeling: Markov property, discrete time Markov chain (DTMC) and continuous time Markov chain (CTMC). We also discuss how to find the steady state distributions from these Markov chains and how they can be used to compute the system performance metric. The solution methodologies include a balance equation technique, limiting probability technique, and the uniformization. We try to minimize the theoretical aspects of the Markov chain so that the book is easily accessible to readers without deep mathematical backgrounds. We then introduce how to develop a Markov chain model with simple applications: a forwarding system, a cellular system blocking, slotted ALOHA, Wi-Fi model, and multichannel based LAN model. The examples cover CTMC, DTMC, birth-death process and non birth-death process. We then introduce more difficult examples in Chapter 4, which are related to wireless LAN networks: the Bianchi model and Multi-Channel MAC model with fixed duration. These models are more advanced than those introduced in Chapter 3 because they require more advanced concepts such as renewal-reward theorem and the queueing network model. We introduce these concepts in the appendix as needed so that readers can follow them without difficulty. We hope that this textbook will be helpful to students, researchers, and network practitioners who want to understand and use mathematical modeling techniques. Table of Contents: Performance Modeling / Markov Chain Modeling / Developing Markov Chain Performance Models / Advanced Markov Chain Models
Networks naturally appear in many high-impact domains, ranging from social network analysis to disease dissemination studies to infrastructure system design. Within network studies, network connectivity plays an important role in a myriad of applications. The diversity of application areas has spurred numerous connectivity measures, each designed for some specific tasks. Depending on the complexity of connectivity measures, the computational cost of calculating the connectivity score can vary significantly. Moreover, the complexity of the connectivity would predominantly affect the hardness of connectivity optimization, which is a fundamental problem for network connectivity studies. This book presents a thorough study in network connectivity, including its concepts, computation, and optimization. Specifically, a unified connectivity measure model will be introduced to unveil the commonality among existing connectivity measures. For the connectivity computation aspect, the authors introduce the connectivity tracking problems and present several effective connectivity inference frameworks under different network settings. Taking the connectivity optimization perspective, the book analyzes the problem theoretically and introduces an approximation framework to effectively optimize the network connectivity.Lastly, the book discusses the new research frontiers and directions to explore for network connectivity studies. This book is an accessible introduction to the study of connectivity in complex networks. It is essential reading for advanced undergraduates, Ph.D. students, as well as researchers and practitioners who are interested in graph mining, data mining, and machine learning.
The last decade has seen an unprecedented growth in the demand for wireless services. These services are fueled by applications that often require not only high data rates, but also very low latency to function as desired. However, as wireless networks grow and support increasingly large numbers of users, these control algorithms must also incur only low complexity in order to be implemented in practice. Therefore, there is a pressing need to develop wireless control algorithms that can achieve both high throughput and low delay, but with low-complexity operations. While these three performance metrics, i.e., throughput, delay, and complexity, are widely acknowledged as being among the most important for modern wireless networks, existing approaches often have had to sacrifice a subset of them in order to optimize the others, leading to wireless resource allocation algorithms that either suffer poor performance or are difficult to implement. In contrast, the recent results presented in this book demonstrate that, by cleverly taking advantage of multiple physical or virtual channels, one can develop new low-complexity algorithms that attain both provably high throughput and provably low delay. The book covers both the intra-cell and network-wide settings. In each case, after the pitfalls of existing approaches are examined, new systematic methodologies are provided to develop algorithms that perform provably well in all three dimensions.
This book provides a quick reference and insights into modeling and optimization of software-defined networks (SDNs). It covers various algorithms and approaches that have been developed for optimizations related to the control plane, the considerable research related to data plane optimization, and topics that have significant potential for research and advances to the state-of-the-art in SDN. Over the past ten years, network programmability has transitioned from research concepts to more mainstream technology through the advent of technologies amenable to programmability such as service chaining, virtual network functions, and programmability of the data plane. However, the rapid development in SDN technologies has been the key driver behind its evolution. The logically centralized abstraction of network states enabled by SDN facilitates programmability and use of sophisticated optimization and control algorithms for enhancing network performance, policy management, and security.Furthermore, the centralized aggregation of network telemetry facilitates use of data-driven machine learning-based methods. To fully unleash the power of this new SDN paradigm, though, various architectural design, deployment, and operations questions need to be addressed. Associated with these are various modeling, resource allocation, and optimization opportunities.The book covers these opportunities and associated challenges, which represent a ``call to arms'' for the SDN community to develop new modeling and optimization methods that will complement or improve on the current norms.
This book concerns peer-to-peer applications and mechanisms operating on the Internet, particularly those that are not fully automated and involve significant human interaction. So, the realm of interest is the intersection of distributed systems and online social networking. Generally, simple models are described to clarify the ideas. Beginning with short overviews of caching, graph theory and game theory, we cover the basic ideas of structured and unstructured search. We then describe a simple framework for reputations and for iterated referrals and consensus. This framework is applied to a problem of sybil identity management. The fundamental result for iterated Byzantine consensus for a relatively important issue is also given. Finally, a straight-forward epidemic model is used to describe the propagation of malware on-line and for BitTorrent-style file-sharing. This short book can be used as a preliminary orientation to this subject matter. References are given for the interested student to papers with good survey and tutorial content and to those with more advanced treatments of specific topics. For an instructor, this book is suitable for a one-semester seminar course. Alternatively, it could be the framework for a semester's worth of lectures where the instructor would supplement each chapter with additional lectures on related or more advanced subject matter. A basic background is required in the areas of computer networking, probability theory, stochastic processes, and queueing. Table of Contents: Networking overview / Graphs / Games / Search in structured networks / Search in unstructured networks / Transactions, reputations, and referrals / False Referrals / Peer-to-peer file sharing / Consensus in dynamical belief systems / Byzantine consensus / Epidemics
Resource Allocation lies at the heart of network control. In the early days of the Internet the scarcest resource was bandwidth, but as the network has evolved to become an essential utility in the lives of billions, the nature of the resource allocation problem has changed. This book attempts to describe the facets of resource allocation that are most relevant to modern networks. It is targeted at graduate students and researchers who have an introductory background in networking and who desire to internalize core concepts before designing new protocols and applications. We start from the fundamental question: what problem does network resource allocation solve? This leads us, in Chapter 1, to examine what it means to satisfy a set of user applications that have different requirements of the network, and to problems in Social Choice Theory. We find that while capturing these preferences in terms of utility is clean and rigorous, there are significant limitations to this choice. Chapter 2 focuses on sharing divisible resources such as links and spectrum. Both of these resources are somewhat atypical -- a link is most accurately modeled as a queue in our context, but this leads to the analytical intractability of queueing theory, and spectrum allocation methods involve dealing with interference, a poorly understood phenomenon. Chapters 3 and 4 are introductions to two allocation workhorses: auctions and matching. In these chapters we allow the users to game the system (i.e., to be strategic), but don't allow them to collude. In Chapter 5, we relax this restriction and focus on collaboration. Finally, in Chapter 6, we discuss the theoretical yet fundamental issue of stability. Here, our contribution is mostly on making a mathematically abstruse subdiscipline more accessible without losing too much generality.
Today's wireless communications and networking practices are tightly coupled with economic considerations, to the extent that it is almost impossible to make a sound technology choice without understanding the corresponding economic implications. This book aims at providing a foundational introduction on how microeconomics, and pricing theory in particular, can help us to understand and build better wireless networks. The book can be used as lecture notes for a course in the field of network economics, or a reference book for wireless engineers and applied economists to understand how pricing mechanisms influence the fast growing modern wireless industry. This book first covers the basics of wireless communication technologies and microeconomics, before going in-depth about several pricing models and their wireless applications. The pricing models include social optimal pricing, monopoly pricing, price differentiation, oligopoly pricing, and network externalities, supported by introductory discussions of convex optimization and game theory. The wireless applications include wireless video streaming, service provider competitions, cellular usage-based pricing, network partial price differentiation, wireless spectrum leasing, distributed power control, and cellular technology upgrade. More information related to the book (including references, slides, and videos) can be found at ncel.ie.cuhk.edu.hk/content/wireless-network-pricing.