Download Free Performance Based Earthquake Engineering Design Evaluation Procedure For Bridge Foundations Undergoing Liquefaction Induced Lateral Ground Displacement Book in PDF and EPUB Free Download. You can read online Performance Based Earthquake Engineering Design Evaluation Procedure For Bridge Foundations Undergoing Liquefaction Induced Lateral Ground Displacement and write the review.

The test results were then used to calibrate a finite element model of a bridge column. This bridge column model was incorporated into a hybrid model of a typical California overpass bridge and tested using the hybrid simulation technique. The finite element model of the typical California overpass bridge was validated using the data from hybrid simulations. The validated model of the typical bridge was used to evaluate its post-earthquake truck load capacity in an extensive parametric study that examined the effects of different ground motions and bridge modeling parameters such as the boundary conditions imposed by the bridge abutments, the location of the truck on the bridge, and the amount of bridge column residual drift. The principal outcomes of this study are the following findings.
The conducted study is directed towards enhancements in performance assessment of highway bridges under a wide range of earthquake input shaking scenarios. Seismic response of the superstructure is highly influenced by the global bridge-ground characteristics as an integral system. Therefore, nonlinear representation of the bridge deck, columns, abutments, and foundation response are to be integrated within a unified framework. On this basis, a performance-based earthquake engineering (PBEE) framework was extended and utilized to estimate the post-earthquake loss. To facilitate systematic execution of this analysis framework, a graphical user-interface was further developed and employed. For calibration purposes, a Finite Element (FE) model of an existing large heavily instrumented bridge system at Eureka, California (Samoa Channel Bridge) was developed. Calibration was undertaken based on the recorded earthquake response. Numerical simulations of the bridge model under seismic loading conditions were conducted. Simulation results show that the recorded data provide valuable insights to understand the seismic bridge response and to reliably estimate the damage. Using a practice-oriented pushover procedure, the response of a bridge subjected to liquefaction-induced lateral spreading was investigated. The analysis framework and representative results are presented, where the abutment lateral slope displacement is resisted by the entire bridge configuration. Permanent ground deformation induces longitudinal displacement on the abutment and consequently the entire bridge system. As such, the response of the bridge and its pile foundations were investigated and correlated with the imposed lateral spreading displacement. Overall, the novel contributions and findings are summarized as follows: (1) A bridge-ground seismic response computational analysis tool was further developed for routine practical applications; (2) In this tool, a PBEE framework was extended to handle multi-span bridge-ground systems within an integrated simulation environment; (3) Calibrated by recorded earthquake response, a framework was implemented for a representative large instrumented bridge-ground system in California to illustrate the involved response mechanisms and PBEE outcomes; (4) For response under lateral spreading considerations, a global bridge-ground systematic analysis framework was proposed and developed; (5) Patterned after an existing bridge in California, the framework was implemented with parametric studies addressing the procedure assumptions and potential retrofit bridge configurations.
"TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 440, Performance-Based Seismic Bridge Design (PBSD) summarizes the current state of knowledge and practice for PBSD. PBSD is the process that links decision making for facility design with seismic input, facility response, and potential facility damage. The goal of PBSD is to provide decision makers and stakeholders with data that will enable them to allocate resources for construction based on levels of desired seismic performance"--Publisher's description.
Bridge Maintenance, Safety, Management, Resilience and Sustainability contains the lectures and papers presented at The Sixth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2012), held in Stresa, Lake Maggiore, Italy, 8-12 July, 2012. This volume consists of a book of extended abstracts (800 pp) Extensive collection of revised expert papers on recent advances in bridge maintenance, safety, management and life-cycle performance, representing a major contribution to the knowledge base of all areas of the field.
Proceedings of a workshop on Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground, held in Davis, California, March 16-18, 2005. Sponsored by the Pacific Earthquake Engineering Research Center; University of California at Berkeley; Center for Urban Earthquake Engineering; Tokyo Institute of Technology; Geo-Institute of ASCE. This collection contains 25 papers that discuss physical measurements and observations from earthquake case histories, field tests in blast-liquefied ground, dynamic centrifuge model studies, and large-scale shaking table studies. Papers contain recent findings on fundamental soil-pile interaction mechanisms, numerical analysis methods, and reviews and evaluations of existing and emerging design methodologies. This proceeding provides comprehensive coverage of a major issue in earthquake engineering practice and hazard mitigation efforts.
The book focuses on the use of inelastic analysis methods for the seismic assessment and design of bridges, for which the work carried out so far, albeit interesting and useful, is nevertheless clearly less than that for buildings. Although some valuable literature on the subject is currently available, the most advanced inelastic analysis methods that emerged during the last decade are currently found only in the specialised research-oriented literature, such as technical journals and conference proceedings. Hence the key objective of this book is two-fold, first to present all important methods belonging to the aforementioned category in a uniform and sufficient for their understanding and implementation length, and to provide also a critical perspective on them by including selected case-studies wherein more than one methods are applied to a specific bridge and by offering some critical comments on the limitations of the individual methods and on their relative efficiency. The book should be a valuable tool for both researchers and practicing engineers dealing with seismic design and assessment of bridges, by both making the methods and the analytical tools available for their implementation, and by assisting them to select the method that best suits the individual bridge projects that each engineer and/or researcher faces.