Download Free Performance Analysis Of Crossbar Multiprocessor Systems Book in PDF and EPUB Free Download. You can read online Performance Analysis Of Crossbar Multiprocessor Systems and write the review.

Performance Evaluation, Prediction and Visualization in Parallel Systems presents a comprehensive and systematic discussion of theoretics, methods, techniques and tools for performance evaluation, prediction and visualization of parallel systems. Chapter 1 gives a short overview of performance degradation of parallel systems, and presents a general discussion on the importance of performance evaluation, prediction and visualization of parallel systems. Chapter 2 analyzes and defines several kinds of serial and parallel runtime, points out some of the weaknesses of parallel speedup metrics, and discusses how to improve and generalize them. Chapter 3 describes formal definitions of scalability, addresses the basic metrics affecting the scalability of parallel systems, discusses scalability of parallel systems from three aspects: parallel architecture, parallel algorithm and parallel algorithm-architecture combinations, and analyzes the relations of scalability and speedup. Chapter 4 discusses the methodology of performance measurement, describes the benchmark- oriented performance test and analysis and how to measure speedup and scalability in practice. Chapter 5 analyzes the difficulties in performance prediction, discusses application-oriented and architecture-oriented performance prediction and how to predict speedup and scalability in practice. Chapter 6 discusses performance visualization techniques and tools for parallel systems from three stages: performance data collection, performance data filtering and performance data visualization, and classifies the existing performance visualization tools. Chapter 7 describes parallel compiling-based, search-based and knowledge-based performance debugging, which assists programmers to optimize the strategy or algorithm in their parallel programs, and presents visual programming-based performance debugging to help programmers identify the location and cause of the performance problem. It also provides concrete suggestions on how to modify their parallel program to improve the performance. Chapter 8 gives an overview of current interconnection networks for parallel systems, analyzes the scalability of interconnection networks, and discusses how to measure and improve network performances. Performance Evaluation, Prediction and Visualization in Parallel Systems serves as an excellent reference for researchers, and may be used as a text for advanced courses on the topic.
This unique text/reference provides an overview of crossbar-based interconnection networks, offering novel perspectives on these important components of high-performance, parallel-processor systems. A particular focus is placed on solutions to the blocking and scalability problems. Topics and features: introduces the fundamental concepts in interconnection networks in multi-processor systems, including issues of blocking, scalability, and crossbar networks; presents a classification of interconnection networks, and provides information on recognizing each of the networks; examines the challenges of blocking and scalability, and analyzes the different solutions that have been proposed; reviews a variety of different approaches to improve fault tolerance in multistage interconnection networks; discusses the scalable crossbar network, which is a non-blocking interconnection network that uses small-sized crossbar switches as switching elements. This invaluable work will be of great benefit to students, researchers and practitioners interested in computer networks, parallel processing and reliability engineering. The text is also essential reading for course modules on interconnection network design and reliability.
Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thougtit that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna tional publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 31 (thesis year 1986) a total of 11 ,480 theses titles trom 24 Canadian and 182 United States universities. We are sure that this broader base tor these titles reported will greatly enhance the value ot this important annual reterence work. While Volume 31 reports theses submitted in 1986, on occasion, certain univer sities do re port theses submitted in previousyears but not reported at the time.
As computers become more complex, the number and complexity of the tasks facing the computer architect have increased. Computer performance often depends in complex way on the design parameters and intuition that must be supplemented by performance studies to enhance design productivity. This book introduces computer architects to computer system performance models and shows how they are relatively simple, inexpensive to implement, and sufficiently accurate for most purposes. It discusses the development of performance models based on queuing theory and probability. The text also shows how they are used to provide quick approximate calculations to indicate basic performance tradeoffs and narrow the range of parameters to consider when determining system configurations. It illustrates how performance models can demonstrate how a memory system is to be configured, what the cache structure should be, and what incremental changes in cache size can have on the miss rate. A particularly deep knowledge of probability theory or any other mathematical field to understand the papers in this volume is not required.
With globalization in every area of human activity being a key trend of the1990s, better and faster networks will have an increasingly important role and impact in making the 'global village' a reality. The papers collected in this volume highlight the global nature of the activities and the tremendous pace of R&D in the field of communications and networking.
Three approaches can be applied to determine the performance of parallel and distributed computer systems: measurement, simulation, and mathematical methods. This book introduces various network architectures for parallel and distributed systems as well as for systems-on-chips, and presents a strategy for developing a generator for automatic model derivation. It will appeal to researchers and students in network architecture design and performance analysis.
A handy source for practicing engineers and researchers, this book offers collected examples of successful performance evaluation of high speed telecommunications switching fabrics such as ATM networks and high speed interconnection technology for computers. It emphasizes the performance evaluation of such switches as they apply to predicting a proposed system's performance through the use of statistical models -- a cost-saving way for communications engineers to test the design of a system without having to construct it.