Download Free Performance Analysis Of Communications Networks And Systems Book in PDF and EPUB Free Download. You can read online Performance Analysis Of Communications Networks And Systems and write the review.

This rigourous and self-contained book describes mathematical and, in particular, stochastic methods to assess the performance of networked systems. It consists of three parts. The first part is a review on probability theory. Part two covers the classical theory of stochastic processes (Poisson, renewal, Markov and queuing theory), which are considered to be the basic building blocks for performance evaluation studies. Part three focuses on the relatively new field of the physics of networks. This part deals with the recently obtained insights that many very different large complex networks - such as the Internet, World Wide Web, proteins, utility infrastructures, social networks - evolve and behave according to more general common scaling laws. This understanding is useful when assessing the end-to-end quality of communications services, for example, in Internet telephony, real-time video and interacting games. Containing problems and solutions, this book is ideal for graduate students taking courses in performance analysis.
This textbook provides an introduction to common methods of performance modeling and analysis of communication systems. These methods form the basis of traffic engineering, teletraffic theory, and analytical system dimensioning. The fundamentals of probability theory, stochastic processes, Markov processes, and embedded Markov chains are presented. Basic queueing models are described with applications in communication networks. Advanced methods are presented that have been frequently used in recent practice, especially discrete-time analysis algorithms, or which go beyond classical performance measures such as Quality of Experience or energy efficiency. Recent examples of modern communication networks include Software Defined Networking and the Internet of Things. Throughout the book, illustrative examples are used to provide practical experience in performance modeling and analysis. Target group: The book is aimed at students and scientists in computer science and technical computer science, operations research, electrical engineering and economics.
Addressing the fundamental technologies and theories associated with designing complex communications systems and networks, Principles of Communications Networks and Systems provides models and analytical methods for evaluating their performance. Including both the physical layer (digital transmission and modulation) and networking topics, the quality of service concepts belonging to the different layers of the protocol stack are interrelated to form a comprehensive picture. The book is designed to present the material in an accessible but rigorous manner. It jointly addresses networking and transmission aspects following a unified approach and using a bottom up style of presentation, starting from requirements on transmission links all the way up to the corresponding quality of service at network and application layers. The focus is on presenting the material in an integrated and systematic fashion so that students will have a clear view of all the principal aspects and of how they interconnect with each other. A comprehensive introduction to communications systems and networks, addressing both network and transmission topics Structured for effective learning, with basic principles and technologies being introduced before more advanced ones are explained Features examples of existing systems and recent standards as well as advanced digital modulation techniques such as CDMA and OFDM Contains tools to help the reader in the design and performance analysis of modern communications systems Provides problems at the end of each chapter, with answers on an accompanying website
This book covers performance analysis of computer networks, and begins by providing the necessary background in probability theory, random variables, and stochastic processes. Queuing theory and simulation are introduced as the major tools analysts have access to. It presents performance analysis on local, metropolitan, and wide area networks, as well as on wireless networks. It concludes with a brief introduction to self-similarity. Designed for a one-semester course for senior-year undergraduates and graduate engineering students, it may also serve as a fingertip reference for engineers developing communication networks, managers involved in systems planning, and researchers and instructors of computer communication networks.
Intended for a first course in performance evaluation, this is a self-contained treatment covering all aspects of queuing theory. It starts by introducing readers to the terminology and usefulness of queueing theory and continues by considering Markovian queues in equilibrium, Littles law, reversibility, transient analysis, and computation, plus the M/G/1 queuing system. It then moves on to cover networks of queues, and concludes with techniques for numerical solutions, a discussion of the PANACEA technique, discrete time queueing systems and simulation, and stochastic Petri networks. The whole is backed by case studies of distributed queueing networks arising in industrial applications. This third edition includes a new chapter on self-similar traffic, many new problems, and solutions for many exercises.
Providing performance guarantees is one of the most important issues for future telecommunication networks. This book describes theoretical developments in performance guarantees for telecommunication networks from the last decade. Written for the benefit of graduate students and scientists interested in telecommunications-network performance this book consists of two parts. The first introduces the recently-developed filtering theory for providing deterministic (hard) guarantees, such as bounded delay and queue length. The filtering theory is developed under the min-plus algebra, where one replaces the usual addition with the min operator and the usual multiplication with the addition operator. As in the classical linear system theory, the filtering theory treats an arrival process (or a departure process ) as a signal and a network element as a system. Network elements, including traffic regulators and servers, can be modelled as linear filters under the min-plus algebra, and they can be joined by concatenation, "filter bank summation", and feedback to form a composite network element. The problem of providing deterministic guarantees is equivalent to finding the impulse response of composite network elements. This section contains material on: - (s, r)-calculus - Filtering theory for deterministic traffic regulation, service guarantees and networks with variable-length packets - Traffic specification - Networks with multiple inputs and outputs - Constrained traffic regulation The second part of the book addresses stochastic (soft) guarantees, focusing mainly on tail distributions of queue lengths and packet loss probabilities and contains material on: - (s(q), r(q))-calculus and q-envelope rates - The large deviation principle - The theory of effective bandwidth The mathematical theory for stochastic guarantees is the theory of effective bandwidth. Based on the large deviation principle, the theory of effective bandwidth provides approximations for the bandwidths required to meet stochastic guarantees for both short-range dependent inputs and long-range dependent inputs.
Promptly growing demand for telecommunication services and information interchange has led to the fact that communication became one of the most dynamical branches of an infrastructure of a modern society. The book introduces to the bases of classical MDP theory; problems of a finding optimal САС in models are investigated and various problems of improvement of characteristics of traditional and multimedia wireless communication networks are considered together with both classical and new methods of theory MDP which allow defining optimal strategy of access in teletraffic systems. The book will be useful to specialists in the field of telecommunication systems and also to students and post-graduate students of corresponding specialties.
Provides the mathematical, stochastic and graph theoretic methods to analyse the performance and robustness of complex networks and systems.
Analysis of Computer and Communication Networks provides the basic techniques for modeling and analyzing two of the fundamental components of high performance networks: switching equipment, and software employed at the end nodes and intermediate switches. The book also reviews the design options used to build efficient switching equipment. Topics covered include Markov chains and queuing analysis, traffic modeling, interconnection networks, and switch architectures and buffering strategies. This book covers the mathematical theory and techniques necessary for analyzing telecommunication systems. Queuing and Markov chain analyses are provided for many protocols currently in use. The book then discusses in detail applications of Markov chains and queuing analysis to model more than 15 communications protocols and hardware components.
A modern mathematical approach to the design of communication networks for graduate students, blending control, optimization, and stochastic network theories alongside a broad range of performance analysis tools. Practical applications are illustrated by making connections to network algorithms and protocols. End-of-chapter problems covering a range of difficulties support student learning.