Download Free Peptide Antibodies Book in PDF and EPUB Free Download. You can read online Peptide Antibodies and write the review.

This extensive volume covers basic and advanced aspects of peptide antibody production, characterization and uses. Although peptide antibodies have been available for many years, they continue to be a field of active research and method development. For example, peptide antibodies which are dependent on specific posttranslational modifications are of great interest, such as phosphorylation, citrullination and others, while different forms of recombinant peptide antibodies are gaining interest, notably nanobodies, single chain antibodies, TCR-like antibodies, among others. Within this volume, those areas are covered, as well as several technical and scientific advances: solid phase peptide synthesis, peptide carrier conjugation and immunization, genomics, transcriptomics, proteomics and elucidation of the molecular basis of antigen presentation and recognition by dendritic cells, macrophages, B cells and T cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Comprehensive and authoritative, Peptide Antibodies: Methods and Protocols serves as an ideal reference for researchers exploring this vital and expansive area of study.
The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.
The American Anti-Vivisection Society (AAVS) petitioned the National Institutes of Health (NIH) on April 23, 1997, to prohibit the use of animals in the production of mAb. On September 18, 1997, NIH declined to prohibit the use of mice in mAb production, stating that "the ascites method of mAb production is scientifically appropriate for some research projects and cannot be replaced." On March 26, 1998, AAVS submitted a second petition, stating that "NIH failed to provide valid scientific reasons for not supporting a proposed ban." The office of the NIH director asked the National Research Council to conduct a study of methods of producing mAb. In response to that request, the Research Council appointed the Committee on Methods of Producing Monoclonal Antibodies, to act on behalf of the Institute for Laboratory Animal Research of the Commission on Life Sciences, to conduct the study. The 11 expert members of the committee had extensive experience in biomedical research, laboratory animal medicine, animal welfare, pain research, and patient advocacy (Appendix B). The committee was asked to determine whether there was a scientific necessity for the mouse ascites method; if so, whether the method caused pain or distress; and, if so, what could be done to minimize the pain or distress. The committee was also asked to comment on available in vitro methods; to suggest what acceptable scientific rationale, if any, there was for using the mouse ascites method; and to identify regulatory requirements for the continued use of the mouse ascites method. The committee held an open data-gathering meeting during which its members summarized data bearing on those questions. A 1-day workshop (Appendix A) was attended by 34 participants, 14 of whom made formal presentations. A second meeting was held to finalize the report. The present report was written on the basis of information in the literature and information presented at the meeting and the workshop.
Autoimmune diseases are characterized by the occurrence of antibodies reacting with self-constituents of the body. The fully updated third edition of Autoantibodies is an in-depth review of the main autoantibodies identified up to now, with particular emphasis on those that display a diagnostic or prognostic clinical value. The new edition covers recent scientific advances, diagnostic techniques, and therapeutic technologies. Each chapter is focused on a single family of autoantibodies. This important reference contains historical notes, definitions, origins and sources of antigens recognized genetic associations, mediated pathogenic mechanisms, methods of detection, as well as clinical utility (disease prevalence and association, diagnostic value, sensitivity and specificity, prognostic value). This is an ideal reference for anyone involved in the field of autoimmune diseases. - Presents all known, important autoantibodies in a single source, focusing on the antibodies needed for autoimmune disorder diagnosis - Includes clinical applications for each autoantibody along with general information - Organized by disease and disorder type, by autoantibody family, and completely cross-referenced
A Comprehensive Guide to Crucial Attributes of Therapeutic Proteins in Biological Pharmaceuticals With this book, Dr. Raju offers a valuable resource for professionals involved in research and development of biopharmaceutical and biosimilar drugs. This is a highly relevant work, as medical practitioners have increasingly turned to biopharmaceutical medicines in their search for safe and reliable treatments for complex diseases, while pharmaceutical researchers seek to expand the availability of biopharmaceuticals and create more affordable biosimilar alternatives. Readers receive a thorough overview of the major co-translational modifications (CTMs) and post-translational modifications (PTMs) of therapeutic proteins relevant to the development of biotherapeutics. The majority of chapters detail individual CTMs and PTMs that may affect the physicochemical, biochemical, biological, pharmacokinetic, immunological, toxicological etc. properties of proteins. In addition, readers are guided on the methodology necessary to analyze and characterize these modifications. Thus, readers gain not only an understanding of CTMs/PTMs, but also the ability to design and assess their own structure-function studies for experimental molecules. Specific features and topics include: Discussion of the research behind and expansion of biopharmaceuticals Twenty chapters detailing relevant CTMs and PTMs of proteins, such as glycosylation, oxidation, phosphorylation, methylation, proteolysis, etc. Each chapter offers an introduction and guide to the mechanisms and biological significance of an individual CTM or PTM, including practical guidance for experiment design and analysis An appendix of biologic pharmaceuticals currently on the market, along with an assessment of their PTMs and overall safety and efficacy This volume will prove a key reference on the shelves of industry and academic researchers involved in the study and development of biochemistry, molecular biology, biopharmaceuticals and proteins in medicine, particularly as biopharmaceuticals and biosimilars become ever more prominent tools in the field of healthcare.
This long overdue title provides a comprehensive, up-to-date, state-of-the art review of approved biologic therapies, with coverage of mechanisms of action, Indications for therapy, immunogenicity and a detailed examination of adverse effects and safety of the many and diverse therapeutic agents presented in a total of 13 chapters. It is predicted that by 2016, biologics will make up half of the world's 20 top-selling drugs and by 2018, biologic medicine sales will account for almost half of the world's 100 biggest selling drugs. Recombinant proteins dominate the growing list of the more than 200 approved biotherapeutic agents with targeted antibodies, fusion proteins and receptors; cytokines; hormones; enzymes; proteins involved in blood-clotting, homeostasis and thrombosis; vaccines; botulinum neurotoxins; and, more recently, biosimilar preparations, comprising the majority of approved biologics. Written with clinicians, other health care professionals, and researchers in mind, Safety of Biologics Therapy examines, in a single volume, the full range of issues surrounding the safety of approved biologic therapies. A good understanding of the risks and safety issues of modern biologics therapy is increasingly being demanded of all those connected with their development, handling, prescribing, administration and subsequent patient management. In addition to being of great value to clinicians in all branches of medicine, and to nurses, pharmacists and researchers, this book will prove invaluable for students taking undergraduate and graduate courses in the above disciplines and in the biomedical sciences.
Immunological Recognition of Peptides in Medicine and Biology gives a state-of-the-art overview on the use of peptides and peptide-ligand interactions, and the critical role they play in recognition patterns for the regulation of various biological functions. A wide range of applications are discussed, including some experimental preclinical ones such as epitope mapping, peptide libraries, and production of amino acid-specific antibodies and their therapeutic use in oncology and infectious disease vaccines. Each chapter also includes step-by-step protocols to aid in actual experiments. Several alternative techniques and strategies are discussed by different authors offering the reader an opportunity to select the most favorable application for a specific biological problem.
A one-stop reference that reviews protein design strategies to applications in industrial and medical biotechnology Protein Engineering: Tools and Applications is a comprehensive resource that offers a systematic and comprehensive review of the most recent advances in the field, and contains detailed information on the methodologies and strategies behind these approaches. The authors—noted experts on the topic—explore the distinctive advantages and disadvantages of the presented methodologies and strategies in a targeted and focused manner that allows for the adaptation and implementation of the strategies for new applications. The book contains information on the directed evolution, rational design, and semi-rational design of proteins and offers a review of the most recent applications in industrial and medical biotechnology. This important book: Covers technologies and methodologies used in protein engineering Includes the strategies behind the approaches, designed to help with the adaptation and implementation of these strategies for new applications Offers a comprehensive and thorough treatment of protein engineering from primary strategies to applications in industrial and medical biotechnology Presents cutting edge advances in the continuously evolving field of protein engineering Written for students and professionals of bioengineering, biotechnology, biochemistry, Protein Engineering: Tools and Applications offers an essential resource to the design strategies in protein engineering and reviews recent applications.