Download Free Peer To Peer Video Streaming Book in PDF and EPUB Free Download. You can read online Peer To Peer Video Streaming and write the review.

The book describes novel solutions to enhance video quality, increase robustness to errors, and reduce end-to-end latency in video streaming systems. The authors are leading Researchers from Stanford University.
Peer-to-Peer Video Streaming describes novel solutions to enhance video quality, increase robustness to errors, and reduce end-to-end latency in video streaming systems. This book will be of use to both academics and professionals as it presents thorough coverage and solutions for current issues with Video Streaming and Peer-to-Peer architectures. The book provides an overview of today’s state-of-the art video streaming technology. It presents adaptive video coding and streaming techniques for performance enhancement of conventional client-server systems and P2P multicast. The detailed appendix incorporates various additional experiments.
Peer-to-peer (P2P) systems have emerged as a promising and cost-effective transport solution for streaming video to a group of users in the Internet. In the P2P architecture, users not only consume video, but also forward it to other users. Thus, P2P systems scale better than client-server systems as users bring resources to the system. The challenge is to achieve low-latency and robust video dissemination by overcoming a number of adversarial aspects and challenges -- peer dynamics, heterogeneous uplink bandwidth of peers, heterogeneous hardware and capabilities of peers, and peer-wise connection restrictions due to NATs/firewalls. This dissertation presents Stanford Peer-to-Peer Multicast (SPPM), a P2P video streaming system. SPPM is designed to achieve low-latency and robust streaming by constructing an overlay of multiple complementary trees and dynamically rearranging the position of peers by Active Overlay Management in a distributed fashion. Next, we extend SPPM for providing playback control to users by time-shifted streaming. To perform time-shifted streaming, peers store past portions of video and forward them to other users when requested, thereby reducing server load. To further alleviate server load, we propose fast prefetching, by which peers can disseminate content quickly. Finally, we present a way to accommodate mobile users. Video transcoding is often required to adapt video for the mobile users. We propose interleaved distributed transcoding (IDT), which allows a video stream to be transcoded at multiple peers that are more capable than mobile users. IDT is shown not only to reduce computation required at a peer but also to achieve higher error resilience in case of peer failure or packet loss.
This second edition provides easy access to important concepts, issues and technology trends in the field of multimedia technologies, systems, techniques, and applications. Over 1,100 heavily-illustrated pages — including 80 new entries — present concise overviews of all aspects of software, systems, web tools and hardware that enable video, audio and developing media to be shared and delivered electronically.
"This book offers insights into current and future communication technologies for a converged Internet that promises soon to be dominated by multimedia applications, at least in terms of bandwidth consumption"--Provided by publisher.
Peer-to-peer (P2P) systems have emerged as a promising and cost-effective transport solution for streaming video to a group of users in the Internet. In the P2P architecture, users not only consume video, but also forward it to other users. Thus, P2P systems scale better than client-server systems as users bring resources to the system. The challenge is to achieve low-latency and robust video dissemination by overcoming a number of adversarial aspects and challenges -- peer dynamics, heterogeneous uplink bandwidth of peers, heterogeneous hardware and capabilities of peers, and peer-wise connection restrictions due to NATs/firewalls. This dissertation presents Stanford Peer-to-Peer Multicast (SPPM), a P2P video streaming system. SPPM is designed to achieve low-latency and robust streaming by constructing an overlay of multiple complementary trees and dynamically rearranging the position of peers by Active Overlay Management in a distributed fashion. Next, we extend SPPM for providing playback control to users by time-shifted streaming. To perform time-shifted streaming, peers store past portions of video and forward them to other users when requested, thereby reducing server load. To further alleviate server load, we propose fast prefetching, by which peers can disseminate content quickly. Finally, we present a way to accommodate mobile users. Video transcoding is often required to adapt video for the mobile users. We propose interleaved distributed transcoding (IDT), which allows a video stream to be transcoded at multiple peers that are more capable than mobile users. IDT is shown not only to reduce computation required at a peer but also to achieve higher error resilience in case of peer failure or packet loss.
How prepared are you to build fast and efficient web applications? This eloquent book provides what every web developer should know about the network, from fundamental limitations that affect performance to major innovations for building even more powerful browser applications—including HTTP 2.0 and XHR improvements, Server-Sent Events (SSE), WebSocket, and WebRTC. Author Ilya Grigorik, a web performance engineer at Google, demonstrates performance optimization best practices for TCP, UDP, and TLS protocols, and explains unique wireless and mobile network optimization requirements. You’ll then dive into performance characteristics of technologies such as HTTP 2.0, client-side network scripting with XHR, real-time streaming with SSE and WebSocket, and P2P communication with WebRTC. Deliver superlative TCP, UDP, and TLS performance Speed up network performance over 3G/4G mobile networks Develop fast and energy-efficient mobile applications Address bottlenecks in HTTP 1.x and other browser protocols Plan for and deliver the best HTTP 2.0 performance Enable efficient real-time streaming in the browser Create efficient peer-to-peer videoconferencing and low-latency applications with real-time WebRTC transports
Programming has become a significant part of connecting theoretical development and scientific application computation. Computer programs and processes that take into account the goals and needs of the user meet with the greatest success, so it behooves software engineers to consider the human element inherent in every line of code they write. Research Anthology on Recent Trends, Tools, and Implications of Computer Programming is a vital reference source that examines the latest scholarly material on trends, techniques, and uses of various programming applications and examines the benefits and challenges of these computational developments. Highlighting a range of topics such as coding standards, software engineering, and computer systems development, this multi-volume book is ideally designed for programmers, computer scientists, software developers, analysts, security experts, IoT software programmers, computer and software engineers, students, professionals, and researchers.
The number of users who rely on the Internet to deliver multimedia content has grown significantly in recent years. As this consumer demand grows, so, too, does our dependency on a wireless and streaming infrastructure which delivers videos, podcasts, and other multimedia. Streaming Media with Peer-to-Peer Networks: Wireless Perspectives offers insights into current and future communication technologies for a converged Internet that promises soon to be dominated by multimedia applications, at least in terms of bandwidth consumption. The book will be of interest to industry managers, and will also serve as a valuable resource to students and researchers looking to grasp the dynamic issues surrounding video streaming and wireless network development.
While people are now using peer-to-peer (P2P) applications for various processes, such as file sharing and video streaming, many research and engineering issues still need to be tackled in order to further advance P2P technologies. Peer-to-Peer Computing: Applications, Architecture, Protocols, and Challenges provides comprehensive theoretical and practical coverage of the major features of contemporary P2P systems and examines the obstacles to further success. Setting the stage for understanding important research issues in P2P systems, the book first introduces various P2P network architectures. It then details the topology control research problem as well as existing technologies for handling topology control issues. The author describes novel and interesting incentive schemes for enticing peers to cooperate and explores recent innovations on trust issues. He also examines security problems in a P2P network. The final chapter addresses the future of the field. Throughout the text, the highly popular P2P IPTV application, PPLive, is used as a case study to illustrate the practical aspects of the concepts covered. Addressing the unique challenges of P2P systems, this book presents practical applications of recent theoretical results in P2P computing. It also stimulates further research on critical issues, including performance and security problems.