Download Free Pavement Roadway And Bridge Life Cycle Assessment 2020 Book in PDF and EPUB Free Download. You can read online Pavement Roadway And Bridge Life Cycle Assessment 2020 and write the review.

An increasing number of agencies, academic institutes, and governmental and industrial bodies are embracing the principles of sustainability in managing their activities. Life Cycle Assessment (LCA) is an approach developed to provide decision support regarding the environmental impact of industrial processes and products. LCA is a field with ongoing research, development and improvement and is being implemented world-wide, particularly in the areas of pavement, roadways and bridges. Pavement, Roadway, and Bridge Life Cycle Assessment 2020 contains the contributions to the International Symposium on Pavement, Roadway, and Bridge Life Cycle Assessment 2020 (Davis, CA, USA, June 3-6, 2020) covering research and practical issues related to pavement, roadway and bridge LCA, including data and tools, asset management, environmental product declarations, procurement, planning, vehicle interaction, and impact of materials, structure, and construction. Pavement, Roadway, and Bridge Life Cycle Assessment 2020 will be of interest to researchers, professionals, and policymakers in academia, industry, and government who are interested in the sustainability of pavements, roadways and bridges.
Roads and Airports Pavement Surface Characteristics contains the papers presented at the 9th International Symposium on Pavement Surface Characteristics (SURF 2022, Milan, Italy, 12-14 September 2022). The symposium was jointly organized by the Italian company that manages Italy’s National Roads (ANAS –Ferrovie dello Stato Italiane Group), the World Road Association (PIARC) and Politecnico di Milano. The contributions aim to improve the quality of pavement surface characteristics while accomplishing efficiency, safety, sustainability, and addressing new generation mobility needs. The book covers topics from emerging research to engineering practice, and is divided in the following sections: Advanced and performing construction methods and equipment Next generation mobility Data monitoring and performance assessment Surface features and performances| Maintenance and preservation treatments Pavement management Economic and political strategies Safety and risk issues Minimizing road impacts Sustainability and performances issues about materials and design Pavements surfaces and urban heat islands Weather conditions impact Airport pavements Roads and Airports Pavement Surface Characteristics is of interest to academics, engineers and professionals in the fields of pavement engineering, transport infrastructure, and related disciplines.
Waste polymers have been studied for various applications such as energy generation and biochemical production; however, their application in asphalt roads still poses some questions. Over the last decade, several studies have reported the utilization of waste plastics in roads using different methodologies and raw materials, but there is still significant inconsistency around this topic. What is the right methodology to recycle waste plastics for road applications? What is the correct type of waste plastics to be used in road applications? What environmental concerns could arise from the use of waste plastics in road applications? Plastic Waste for Sustainable Asphalt Roads covers the various processes and techniques for the utilization of waste plastics in asphalt mixes. The book discusses the various material properties and methodologies, effects of various methodologies, and combination of various polymers. It also provides information on the compatibility between bitumen and plastics, final asphalt performance, and environmental challenges. - Discusses the processes and techniques for utilization of waste plastics in asphalt mixes. - Features a life-cycle assessment of waste plastics in road surfaces and possible Environmental Product Declarations (EPD). - Includes examples of on-field usage through various case studies.
Environmental Life Cycle Assessment is a pivotal guide to identifying environmental problems and reducing related impacts for companies and organizations in need of life cycle assessment (LCA). LCA, a unique sustainability tool, provides a framework that addresses a growing demand for practical technological solutions. Detailing each phase of the LCA methodology, this textbook covers the historical development of LCA, presents the general principles and characteristics of LCA, and outlines the corresponding standards for good practice determined by the International Organization for Standardization. It also explains how to identify the critical aspects of an LCA, provides detailed examples of LCA analysis and applications, and includes illustrated problems and solutions with concrete examples from water management, electronics, packaging, automotive, and other industries. In addition, readers will learn how to: Use consistent criteria to realize and evaluate an LCA independently of individual interests Understand the LCA methodology and become familiar with existing databases and methods based on the latest results of international research Analyze and critique a completed LCA Apply LCA methodology to simple case studies Geared toward graduate and undergraduate students studying environmental science and industrial ecology, as well as practicing environmental engineers, and sustainability professionals who want to teach themselves LCA good practices, Environmental Life Cycle Assessment demonstrates how to conduct environmental assessments for products throughout their life cycles. It presents existing methods and recent developments in the growing field of LCA and systematically covers goal and system definition, life cycle inventory, life cycle impact assessment, and interpretation.
This Interim Technical Bulletin recommends procedures for conducting Life-Cycle Cost Analysis (LCCA) of pavements, provides detailed procedures to determine work zone user costs, and introduces a probabilistic approach to account for the uncertainty associated with LCCA inputs.
"Steel-concrete composite bridges shows how to choose the bridge form and design element sizes to enable the production of accurate drawings and also highlights a wide and full range of examples of the design and construction of this bridge type."--Jacket.
Eco-efficient Pavement Construction Materials acquaints engineers with research findings on new eco-efficient pavement materials and how they can be incorporated into future pavements. Divided into three distinctive parts, the book emphasizes current research topics such as pavements with recycled waste, pavements for climate change mitigation, self-healing pavements, and pavements with energy harvesting potential. Part One considers techniques for recycling, Part Two reviews the contribution of pavements for climate change mitigation, including cool pavements, the development of new coatings for high albedo targets, and the design of pervious pavements. Finally, Part Three focuses on self-healing pavements, addressing novel materials and design and performance. Finally, the book discusses the case of pavements with energy harvesting potential, addressing different technologies on this field. - Offers a clear and concise lifecycle assessment of asphalt pavement recycling for greenhouse gas emission with temporal aspects - Applies key research trends to green the pavement industry - Includes techniques for recycling waste materials, the design of cool pavements, self-healing mechanisms, and key steps in energy harvesting
The recently established Sustainable Development Goals call for a paradigm shift in the way that buildings and infrastructures are conceived. The construction industry is a major source of environmental impacts, given its great material consumption and energy demands. It is also a major contributor to the economic growth of regions, through the provision of useful infrastructure and generation of employment, among other factors. Conventional approaches underlying current building design practices fall short of covering the relevant environmental and social implications derived from inappropriate design, construction, and planning. The development of adequate sustainable design strategies is therefore becoming extremely relevant regarding the achievement of the United Nations 2030 Agenda Goals for Sustainable Development. This book comprises 11 chapters that highlight the actual research trends in the construction sector, aiming to increase the knowledge on sustainable design practices by highlighting the actual practices that explore efficient ways to reduce the environmental consequences related to the construction industry, while promoting social wellbeing and economic development. The chapters collect papers included in the Special Issue “Trends in Sustainable Buildings and Infrastructure” of the International Journal of Environmental Research and Public Health.