Download Free Pattern Recognition And Classification In Time Series Data Book in PDF and EPUB Free Download. You can read online Pattern Recognition And Classification In Time Series Data and write the review.

Patterns can be any number of items that occur repeatedly, whether in the behaviour of animals, humans, traffic, or even in the appearance of a design. As technologies continue to advance, recognizing, mimicking, and responding to all types of patterns becomes more precise. Pattern Recognition and Classification in Time Series Data focuses on intelligent methods and techniques for recognizing and storing dynamic patterns. Emphasizing topics related to artificial intelligence, pattern management, and algorithm development, in addition to practical examples and applications, this publication is an essential reference source for graduate students, researchers, and professionals in a variety of computer-related disciplines.
The beginning of the age of artificial intelligence and machine learning has created new challenges and opportunities for data analysts, statisticians, mathematicians, econometricians, computer scientists and many others. At the root of these techniques are algorithms and methods for clustering and classifying different types of large datasets, including time series data. Time Series Clustering and Classification includes relevant developments on observation-based, feature-based and model-based traditional and fuzzy clustering methods, feature-based and model-based classification methods, and machine learning methods. It presents a broad and self-contained overview of techniques for both researchers and students. Features Provides an overview of the methods and applications of pattern recognition of time series Covers a wide range of techniques, including unsupervised and supervised approaches Includes a range of real examples from medicine, finance, environmental science, and more R and MATLAB code, and relevant data sets are available on a supplementary website
Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This book covers the state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the book also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed. Contents: A Survey of Recent Methods for Efficient Retrieval of Similar Time Sequences (H M Lie); Indexing of Compressed Time Series (E Fink & K Pratt); Boosting Interval-Based Literal: Variable Length and Early Classification (J J Rodriguez Diez); Segmenting Time Series: A Survey and Novel Approach (E Keogh et al.); Indexing Similar Time Series under Conditions of Noise (M Vlachos et al.); Classification of Events in Time Series of Graphs (H Bunke & M Kraetzl); Median Strings--A Review (X Jiang et al.); Change Detection in Classfication Models of Data Mining (G Zeira et al.). Readership: Graduate students, reseachers and practitioners in the fields of data mining, machine learning, databases and statistics.
MATLAB has the tool Deep Leraning Toolbox that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, timeseries forecasting, and dynamic system modeling and control. Dynamic neural networks are good at timeseries prediction. You can use the Neural Net Time Series app to solve different kinds of time series problems It is generally best to start with the GUI, and then to use the GUI to automatically generate command line scripts. Before using either method, the first step is to define the problem by selecting a data set. Each GUI has access to many sample data sets that you can use to experiment with the toolbox. If you have a specific problem that you want to solve, you can load your own data into the workspace. With MATLAB is possibe to solve three different kinds of time series problems. In the first type of time series problem, you would like to predict future values of a time series y(t) from past values of that time series and past values of a second time series x(t). This form of prediction is called nonlinear autoregressive network with exogenous (external) input, or NARX. In the second type of time series problem, there is only one series involved. The future values of a time series y(t) are predicted only from past values of that series. This form of prediction is called nonlinear autoregressive, or NAR. The third time series problem is similar to the first type, in that two series are involved, an input series (predictors) x(t) and an output series (responses) y(t). Here you want to predict values of y(t) from previous values of x(t), but without knowledge of previous values of y(t). This book develops methods for time series forecasting using neural networks across MATLAB
In this research work, we have implemented machine learning & deep-learning algorithms on realtime multivariate time series datasets in the manufacturing & health care fields. The research work is organized into two case-studies. The case study-1 is about rare event classification in multivariate time series in a pulp and paper manufacturing industry, data was collected of multiple sensors at each stage of the production line, the data contains a rare event of paper break that commonly occurs in the industry. For preprocessing we have implemented a sliding window approach for calculating the first-order difference method to capture the variation in the data over time. The sliding window approach helps to arrange the data for early prediction, for instance, we can set sliding window parameters to predict two or four minutes early as required. Our results indicate that for case study-1 best accuracy score was produced by the TensorFlow deep neural network model it was able to predict 50% of failures and 99% of non-failures with an overall accuracy of 75%. In case study-2 we have brain EEG signal data of patients which were collected with the help of the Stereo EEG Implantation strategy to measure their ability to remember words shown to him/her after distracting him /her with math problems and other activities. The data was collected at a health-care lab at UT-Southwestern Medical Center. The brain EEG signal data collected by the company was preprocessed by using Pearson's and Spearman's correlations, extracting bandwidth frequencies and basic statistics from EEG signal data extracted for each event, event in case study 2 refers to a word shown to a patient. We have used minimum redundancy and maximum relevance feature selection method for dimensionality reduction of the data and to get the most effective features out of all. For case-study 2 best results were produced by SVM-RBF i.e. 73% accuracy to predict if a patient will remember or not remember a word.
The first edition, published in 1973, has become a classicreference in the field. Now with the second edition, readers willfind information on key new topics such as neural networks andstatistical pattern recognition, the theory of machine learning,and the theory of invariances. Also included are worked examples,comparisons between different methods, extensive graphics, expandedexercises and computer project topics. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.
A new approach to the issue of data quality in pattern recognition Detailing foundational concepts before introducing more complex methodologies and algorithms, this book is a self-contained manual for advanced data analysis and data mining. Top-down organization presents detailed applications only after methodological issues have been mastered, and step-by-step instructions help ensure successful implementation of new processes. By positioning data quality as a factor to be dealt with rather than overcome, the framework provided serves as a valuable, versatile tool in the analysis arsenal. For decades, practical need has inspired intense theoretical and applied research into pattern recognition for numerous and diverse applications. Throughout, the limiting factor and perpetual problem has been data—its sheer diversity, abundance, and variable quality presents the central challenge to pattern recognition innovation. Pattern Recognition: A Quality of Data Perspective repositions that challenge from a hurdle to a given, and presents a new framework for comprehensive data analysis that is designed specifically to accommodate problem data. Designed as both a practical manual and a discussion about the most useful elements of pattern recognition innovation, this book: Details fundamental pattern recognition concepts, including feature space construction, classifiers, rejection, and evaluation Provides a systematic examination of the concepts, design methodology, and algorithms involved in pattern recognition Includes numerous experiments, detailed schemes, and more advanced problems that reinforce complex concepts Acts as a self-contained primer toward advanced solutions, with detailed background and step-by-step processes Introduces the concept of granules and provides a framework for granular computing Pattern recognition plays a pivotal role in data analysis and data mining, fields which are themselves being applied in an expanding sphere of utility. By facing the data quality issue head-on, this book provides students, practitioners, and researchers with a clear way forward amidst the ever-expanding data supply.
This book constitutes the refereed proceedings of the 34th Symposium of the German Association for Pattern Recognition, DAGM 2012, and the 36th Symposium of the Austrian Association for Pattern Recognition, OAGM 2012, held in Graz, Austria, in August 2012. The 27 revised full papers and 23 revised poster papers were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections on segmentation, low-level vision, 3D reconstruction, recognition, applications, learning, and features.
Comprehensive Coverage of the Entire Area of Classification Research on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlying algorithms of classification as well as applications of classification in a variety of problem domains, including text, multimedia, social network, and biological data. This comprehensive book focuses on three primary aspects of data classification: Methods-The book first describes common techniques used for classification, including probabilistic methods, decision trees, rule-based methods, instance-based methods, support vector machine methods, and neural networks. Domains-The book then examines specific methods used for data domains such as multimedia, text, time-series, network, discrete sequence, and uncertain data. It also covers large data sets and data streams due to the recent importance of the big data paradigm. Variations-The book concludes with insight on variations of the classification process. It discusses ensembles, rare-class learning, distance function learning, active learning, visual learning, transfer learning, and semi-supervised learning as well as evaluation aspects of classifiers.
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.