Download Free Pathogen And Microbial Contamination Management In Micropropagation Book in PDF and EPUB Free Download. You can read online Pathogen And Microbial Contamination Management In Micropropagation and write the review.

This book is based mainly on invited and offered papers presented at the Second International Symposium on Bacterial and Bacteria-like Contaminants of Plant Tissue Cultures held at University College, Cork, Ireland in September 1996, with additional invited papers. The First International Symposium on Bacterial and Bacteria-like Contaminants of Plant Tissue Cultures was held at the same venue in 1987 and was published as Acta Horticulturae volume 225, 1988. In the intervening years there have been considerable advances in both plant disease diagnostics and in the development of structured approaches to the management of disease and microbial contamination in micropropagation. These approaches have centred on attempts to separate, spatially, the problems of disease transmission and laboratory contamination. Disease-control is best achieved by establishing pathogen-free cultures while laboratory contamination is based on subsequent good working practice. Control of losses due to pathogens and microbial contamination in vitro addresses, arguably, the most importance causes of losses in the industry; nevertheless, losses at and post establishment can also be considerable due to poor quality microplants or micro-shoots. In this symposium, a holistic approach to pathogen and microbial contamination control is evident with the recognition that micropropagators must address pathogen and microbial contamination in vitro, and diseases and microplant failure at establishment. There is increasing interest in establishing beneficial bacterial and mycorrhizal association with microplants in vitro and in vivo.
Contamination in Tissue Culture covers the sources, prevention, detection, and elimination of contamination in tissue culture. Composed of 12 chapters, the book describes the frequency of occurrence of contamination and the many different effects of contamination on cultured cells. After introducing the intraspecies contamination of cell cultures, the book explains a specific type of contamination, such as bacterial, fungal, viral, and parasitic contamination. A chapter in this book describes the reversible and irreversible alterations of cultured FL human amnion cells after experimental mycoplasmal infection. Chapters 9 and 10 examine the occurrence of tissue culture contaminants by electron microscopy and procedures for isolating and identifying viral contaminants. The concluding chapter covers sterility tests of media and solutions for tissue culture and the use of antibiotics. It also summarizes the major developments made as well as future challenges in the field. This book will be helpful to investigators, teachers, students, and technicians within the many disciplines of cell biology, physiology, cytology, virology, immunology, genetics, oncology, molecular biology, biochemistry, and biophysics, in which tissue and cell cultures are used, either as the primary object of research or as tools.
Biosafety in the Laboratory is a concise set of practical guidelines for handling and disposing of biohazardous material. The consensus of top experts in laboratory safety, this volume provides the information needed for immediate improvement of safety practices. It discusses high- and low-risk biological agents (including the highest-risk materials handled in labs today), presents the "seven basic rules of biosafety," addresses special issues such as the shipping of dangerous materials, covers waste disposal in detail, offers a checklist for administering laboratory safetyâ€"and more.
For many, the terms aging, maturation and senescence are synonymous and used interchangeably, but they should not be. Whereas senescence represents an endogenously controlled degenerative programme leading to plant or organ death, genetiC aging encompasses a wide array of passive degenerative genetiC processes driven primarily by exogenous factors (Leopold, 1975). Aging is therefore considered a consequence of genetiC lesions that accumulate over time, but by themselves do not necessarily cause death. These lesions are probably made more severe by the increase in size and complexity in trees and their attendant physiology. Thus while the withering of flower petals following pollination can be considered senescence, the loss of viability of stored seeds more clearly represents aging (Norden, 1988). The very recent book "Senescence and Aging in Plants" does not discuss trees, the most dominant group of plants on the earth. Yet both angiospermic and gymnospermic trees also undergo the above phenomena but less is known about them. Do woody plants senesce or do they just age? What is phase change? Is this synonymous with maturation? While it is now becoming recognized that there is no programmed senescence in trees, senescence of their parts, even in gymnosperms (e. g. , needles of temperate conifers las t an average of 3. 5 years), is common; but aging is a readily acknowledged phenomenon. In theory, at least, in the absence of any programmed senescence trees should -live forever, but in practice they do not.
Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems will cover the up-to-date biosensor technologies used for the detection of bacteria. Written by the world's most renowned and learned scientists each in their own area of expertise, Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems is the first title to cover this expanding research field.
High-efficiency micropropagation, with relatively low labour costs, has been demonstrated in this unique book detailing liquid media systems for plant tissue culture. World authorities (e.g. von Arnold, Curtis, Takayama, Ziv) contribute seminal papers together with papers from researchers across Europe that are members of the EU COST Action 843 "Advanced micropropagation systems". First-hand practical applications are detailed for crops – including ornamentals and trees – using a wide range of techniques, from thin-film temporary immersion systems to more traditional aerated bioreactors with many types of explant – shoots to somatic embryos. The accounts are realistic, balanced and provide a contemporary account of this important aspect of mass propagation. This book is essential reading for all those in commercial micropropagation labs, as well as researchers worldwide who are keen to improve propagation techniques and lower economic costs of production. Undergraduate and postgraduate students in the applied plant sciences and horticulture will find the book an enlightened treatise.
Modern Applications of Plant Biotechnology in Pharmaceutical Sciences explores advanced techniques in plant biotechnology, their applications to pharmaceutical sciences, and how these methods can lead to more effective, safe, and affordable drugs. The book covers modern approaches in a practical, step-by-step manner, and includes illustrations, examples, and case studies to enhance understanding. Key topics include plant-made pharmaceuticals, classical and non-classical techniques for secondary metabolite production in plant cell culture and their relevance to pharmaceutical science, edible vaccines, novel delivery systems for plant-based products, international industry regulatory guidelines, and more. Readers will find the book to be a comprehensive and valuable resource for the study of modern plant biotechnology approaches and their pharmaceutical applications. - Builds upon the basic concepts of cell and plant tissue culture and recombinant DNA technology to better illustrate the modern and potential applications of plant biotechnology to the pharmaceutical sciences - Provides detailed yet practical coverage of complex techniques, such as micropropogation, gene transfer, and biosynthesis - Examines critical issues of international importance and offers real-life examples and potential solutions
Over recent years, progress in micropropagation has not been as rapid as many expected and, even now, relatively few crops are produced commercially. One reason for this is that the biology of material growing in vitro has been insufficiently understood for modifications to standard methods to be made based on sound physiological principles. However, during the past decade, tissue culture companies and others have invested considerable effort to reduce the empirical nature of the production process. The idea of the conference `Physiology, Growth and Development of Plants and Cells in Culture' (Lancaster, 1992) was to introduce specialists in different areas of plant physiology to micropropagators, with the express aims of disseminating as wide a range of information to as large a number of participants as possible, and beginning new discussions on the constraints and potentials affecting the development of in vitro plant production methods. This book is based on presentations from the conference and has been divided into two main sections, dealing with either aspects of the in vitro environment -- light, nutrients, water, gas -- or with applied aspects of the culture process -- morphogenesis, acclimation, rejuvenation, contamination.
With an increasing population, use of new and diverse chemicals that can enter the water supply, and emergence of new microbial pathogens, the U.S. federal government is faced with a regulatory dilemma: Where should it focus its attention and limited resources to ensure safe drinking water supplies for the future? Identifying Future Drinking Water Contaminants is based on a 1998 workshop on emerging drinking water contaminants. It includes a dozen papers that were presented on new and emerging microbiological and chemical drinking water contaminants, associated analytical and water treatment methods for their detection and removal, and existing and proposed environmental databases to assist in their proactive identification and regulation. The papers are preceded by a conceptual approach and related recommendations to EPA for the periodic creation of future Drinking Water Contaminant Candidate Lists (CCLsâ€"produced every five yearsâ€"include currently unregulated chemical and microbiological substances that are known or anticipated to occur in public water systems and that may pose health risks).
Examining the enormous potential of microbiome manipulation to improve health Associations between the composition of the intestinal microbiome and many human diseases, including inflammatory bowel disease, cardiovascular disease, metabolic disorders, and cancer, have been elegantly described in the past decade. Now, whole-genome sequencing, bioinformatics, and precision gene-editing techniques are being combined with centuries-old therapies, such as fecal microbiota transplantation, to translate current research into new diagnostics and therapeutics to treat complex diseases. Bugs as Drugs provides a much-needed overview of microbes in therapies and will serve as an excellent resource for scientists and clinicians as they carry out research and clinical studies on investigating the roles the microbiota plays in health and disease. In Bugs as Drugs, editors Robert A. Britton and Patrice D. Cani have assembled a fascinating collection of reviews that chart the history, current efforts, and future prospects of using microorganisms to fight disease and improve health. Sections cover traditional uses of probiotics, next-generation microbial therapeutics, controlling infectious diseases, and indirect strategies for manipulating the host microbiome. Topics presented include: How well-established probiotics support and improve host health by improving the composition of the intestinal microbiota of the host and by modulating the host immune response. The use of gene editing and recombinant DNA techniques to create tailored probiotics and to characterize next-generation beneficial microbes. For example, engineering that improves the anti-inflammatory profile of probiotics can reduce the number of colonic polyps formed, and lactobacilli can be transformed into targeted delivery systems carrying therapeutic proteins or bioengineered bacteriophage. The association of specific microbiota composition with colorectal cancer, liver diseases, osteoporosis, and inflammatory bowel disease. The gut microbiota has been proposed to serve as an organ involved in regulation of inflammation, immune function, and energy homeostasis. Fecal microbiota transplantation as a promising treatment for numerous diseases beyond C. difficile infection. Practical considerations for using fecal microbiota transplantation are provided, while it is acknowledged that more high-quality evidence is needed to ascertain the importance of strain specificity in positive treatment outcomes. Because systems biology approaches and synthetic engineering of microbes are now high-throughput and cost-effective, a much wider range of therapeutic possibilities can be explored and vetted. If you are looking for online access to the latest clinical microbiology content, please visit www.wiley.com/learn/clinmicronow.