Download Free Patent Application Experimental Engines And Electric Devices Over 300 Drawings Book in PDF and EPUB Free Download. You can read online Patent Application Experimental Engines And Electric Devices Over 300 Drawings and write the review.

Experimental Engines and Electric Devices: Over 300 Patent Application Drawings of Engines and Electric and other Devices. by Daniel Izzo 2024 THE COVER Figure 33b Polarization of Cosmic Radio Signals at Various Frequencies Cosmic radio signals, originating from distant regions of the universe, can exhibit polarization when observed at specific frequencies. This paper explores the fascinating phenomenon of cosmic radio signal polarization at various frequencies, including 91 MHz (FM radio), 160 MHz (VHF radio), and 610 MHz (UHF-TV channel 78). We delve into the methods used to polarize these signals and examine known cosmic radio sources. Additionally, we discuss the intriguing notion of naturally emitted radio pulses from celestial objects. RBT and energy The patent describes several devices intended to generate energy or improve efficiency in various ways. Here’s an analysis of whether these devices might save money on energy usage: 1. Thermionic Electron Electric Generator How it Works: This device converts heat energy into electrical energy. It uses a combination of materials like thorium, tungsten, cesium, and cobalt magnets to generate an amplified electric output. Energy Efficiency: The concept of amplifying a small input of energy into a larger output could theoretically save money by reducing the need for external energy sources. However, the practicality of this in a real-world scenario depends on the efficiency of the conversion process and the costs associated with the materials and maintenance. 2. Microwave Hot Water Boiler Heating System How it Works: This system converts energy from thorium/uranium into microwave energy to heat water. The patent suggests that the device can achieve a higher energy output compared to its input. Energy Efficiency: If the system can indeed produce more energy than it consumes, it could reduce heating costs. However, the use of radioactive materials like thorium and uranium brings safety concerns, regulatory issues, and potential high initial costs, which could offset any energy savings. 3. Hydraulic Leverage Engine How it Works: This engine uses a small input of energy to create a larger mechanical output through a system of pistons and levers. Energy Efficiency: The idea of multiplying a small energy input to achieve a greater output suggests potential for energy savings, especially in applications requiring significant mechanical work. However, the real-world efficiency of such a system depends on the engineering and the specific applications. 4. Artificial Muscle Robot and Other Robotic Systems How it Works: These robots are powered by artificial muscles that expand and contract using electrical energy. They are designed to perform tasks that could otherwise be energy-intensive if done by traditional machines or humans. Energy Efficiency: These systems could save energy if they are used to automate tasks more efficiently than human labor or conventional machines. The effectiveness and energy savings would depend on the specific applications and the efficiency of the robotic systems. General Considerations: Initial Costs vs. Long-Term Savings: The devices described in the patent involve advanced and potentially expensive materials and technologies. The initial setup costs might be high, which could negate some of the energy savings unless the systems are highly efficient and durable. Practicality and Scalability: The effectiveness of these devices in saving energy depends on how practically they can be implemented at scale. Some of the technologies mentioned (e.g., the use of radioactive materials) could be difficult to deploy widely due to safety and regulatory concerns. Conclusion: Some of the devices described in the patent could theoretically save money on energy usage if they perform as described and if the initial costs and safety concerns are manageable. However, the actual savings would depend on many factors, including the efficiency of the devices, the cost of implementation, and the specific applications they are used for. Further research, development, and testing would be necessary to determine their viability in real-world scenarios.
Experimental Engines and Electric and Devices. Over 300 Patent Application Drawings Of Engines and Electric and other Devices. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1: The Resurrection Tomb and Resurrection Ship with a container of preservative and connected devices. FIG. 2: A dead human inside a container with a radio wave crown. FIG. 3: Two human beings in fetal form awaiting nerve regeneration. FIG. 4: A human skeleton being filled with artificial nerves and muscles. FIG. 5: A human skeleton being prepared for conscious resurrection. FIG. 6: Preserved brain and nerves treated with growth hormones. FIG. 7: Arteries and veins carrying blood and energy for artificial muscles. FIG. 8: A human skeleton with artificial muscles. FIG. 9-10: The Portable Nuclear Powered Engine and Electric Generator. FIG. 11-12: The Portable Nuclear Powered Engine obtaining cosmic radio wave energy. FIG. 13: The Resurrection Burial Tomb and Resurrection Ship powered by the Portable Nuclear Powered Engine. FIG. 14-14B: The Microwave Hot Water Boiler Heating System. FIG. 15-16: The Transistorized Plastic Paper Computer. FIG. 17: The Hydraulic Pneumatic Engine. FIG. 18: The bone softening process. FIG. 19: The Citizen Band Free Public Radio wave Telephone System. FIG. 20: The stream paddle wheel and electric generator. FIG. 21: The artificial muscle hand. FIG. 22: The Artificial Muscle Robot. FIG. 23-25: The Portable Nuclear Powered Engine with a Stirling type engine. FIG. 26: [Additional figure details] FIG. 27-29: The Tidal regenerator engine. FIG. 30: The Portable Nuclear Powered Engine and Electric Generator. FIG. 31: The Portable Nuclear Powered Engine with microwave energy generation. FIG. 32: The Portable Nuclear Powered Engine receiving cosmic radio waves. FIG. 33: Lever bars converting torque force. FIG. 34-38: The Hydraulic Leverage Engine. FIG. 39: The Artificial Heart Assister Pump and Zinc-Clove Leaf Oil Paste. FIG. 40: The Hydraulic Pneumatic Engine and Microwave Hot Water Boiler Heating System. FIG. 41: The Lever Engine, Thermionic Electron Electric Generator, and Hydraulic Pneumatic Engine. FIG. 42: Rebuilding and preserving human beings in cryogenic preservation. FIG. 43: The Thermionic Electron Electric Generator. FIG. 44: The electric generator with radioactive cobalt 60 magnets. FIG. 45: The electric systems providing amplified electricity. FIG. 46: Devices converting heat energy into electric current. FIG. 47: The Microwave Boiler. FIG. 48: Devices generating electron emissions into electric energy. FIG. 49: Devices using mechanical energy for electric output. FIG. 50: The Thermionic Electron Electric Generator with nuclear force. FIG. 51: Devices converting heat and electromagnetic energy into electric energy. FIG. 52: Devices converting electric input into radiant heat. FIG. 53: Devices using cobalt magnets for electric energy. FIG. 54: Devices using rare earth elements for power output. FIG. 55: Devices using cobalt 60 magnets. FIG. 56: Devices converting thermionic emissions into radiant energy. FIG. 57: The Artificial Liver and Ammonia Diffuser. FIG. 58: The Resurrection Burial Tomb, Baby Universe, and the Jesus Family Tomb. FIG. 59: The Disposable Resurrection Burial Tomb Spaceship. FIG. 60: Transmutation of metals into created gold metal.
Popular Mechanics inspires, instructs and influences readers to help them master the modern world. Whether it’s practical DIY home-improvement tips, gadgets and digital technology, information on the newest cars or the latest breakthroughs in science -- PM is the ultimate guide to our high-tech lifestyle.