Download Free Passive Rf Component Technology Book in PDF and EPUB Free Download. You can read online Passive Rf Component Technology and write the review.

Focusing on novel materials and techniques, this pioneering volume provides you with a solid understanding of the design and fabrication of smart RF passive components. You find comprehensive details on LCP, metal materials, ferrite materials, nano materials, high aspect ratio enabled materials, green materials for RFID, and silicon micromachining techniques. Moreover, this practical book offers expert guidance on how to apply these materials and techniques to design a wide range of cutting-edge RF passive components, from MEMS switch based tunable passives and 3D passives, to metamaterial-based passives and on-chip passives. Supported with over 145 illustrations, this forward-looking resource summarizes the growing trend of smart RF passive component design and serves as a guide to the performance improving and cost-down solutions this technology offers the next generation of wireless communications.
This authoritative new resource provides an overview and introduction to working with RF, microwave, and high frequency components. From transmission lines, antennas, millimeter waves, ferrites, hybrids, power dividers and filters, this book focuses on practical, time-to-market issues to help with projects in the field. Keeping mathematics to a minimum, this comprehensive volume is packed with over 700 illustrations that help clarify key concepts. The reader will gain an in-depth understanding of the special characteristics exploited in microwave and high frequency design. The book is also used in industrial training courses.
In the high frequency world, the passive technologies required to realize RF and microwave functionality present distinctive challenges. SAW filters, dielectric resonators, MEMS, and waveguide do not have counterparts in the low frequency or digital environment. Even when conventional lumped components can be used in high frequency applications, their behavior does not resemble that observed at lower frequencies. RF and Microwave Passive and Active Technologies provides detailed information about a wide range of component technologies used in modern RF and microwave systems. Updated chapters include new material on such technologies as MEMS, device packaging, surface acoustic wave (SAW) filters, bipolar junction and heterojunction transistors, and high mobility electron transistors (HMETs). The book also features a completely rewritten section on wide bandgap transistors.
This book examines the new and important technology of asymmetric passive components for miniaturized microwave passive circuits. The asymmetric design methods and ideas set forth by the author are groundbreaking and have not been treated in previous works. Readers discover how these design methods reduce the circuit size of microwave integrated circuits and are also critical to reducing the cost of equipment such as cellular phones, radars, antennas, automobiles, and robots. An introductory chapter on the history of asymmetric passive components, which began with asymmetric ring hybrids first described by the author, sets the background for the book. It lays a solid foundation with a chapter examining microwave circuit parameters such as scattering, ABCD, impedance, admittance, and image. A valuable feature of this chapter is a conversion table between the various circuit matrices characterizing two-port networks terminated in arbitrary impedances. The correct conversion has also never been treated in previous works. Next, the author sets forth a thorough treatment of asymmetric passive component design, which covers the basic and indispensable elements for integration with other active or passive devices, including: * Asymmetric ring hybrids * Asymmetric branch-line hybrids * Asymmetric three-port power dividers and N-way power dividers * Asymmetric ring hybrid phase shifters and attenuators * Asymmetric ring filters and asymmetric impedance transformers With its focus on the principles of circuit element design, this is a must-have graduate-level textbook for students in microwave engineering, as well as a reference for design engineers who want to learn the new and powerful design method for asymmetric passive components.
This new book describes modern terahertz (THz) systems and devices and presents practical techniques for accurate measurement with an emphasis on evaluating uncertainties and identifying sources of error. This is the first THz book on the market to address measurement methodologies and issues -- perfect for practitioners and aspiring practitioners wishing to learn good measurement practice and avoid pitfalls. This book provides a brief review of different THz systems and devices, followed by chapters detailing the measurement issues encountered in using each of the main types of THz systems, and a guide to performing measurements rigorously. Particular attention is given to evaluating uncertainties, and recognizing potential sources of errors. The main focus is on time-domain spectroscopy, by far the most widely used technique. Readers are also presented with examples of applications with the emphasis on utility, both in research and in industry.
This unique new resource provides a comparative introduction to vertical Gallium Nitride (GaN) and Silicon Carbide (SiC) power devices using real commercial device data, computer, and physical models. This book uses commercial examples from recent years and presents the design features of various GaN and SiC power components and devices. Vertical verses lateral power semiconductor devices are explored, including those based on wide bandgap materials. The abstract concepts of solid state physics as they relate to solid state devices are explained with particular emphasis on power solid state devices. Details about the effects of photon recycling are presented, including an explanation of the phenomenon of the family tree of photon-recycling. This book offers in-depth coverage of bulk crystal growth of GaN, including hydride vapor-phase epitaxial (HVPE) growth, high-pressure nitrogen solution growth, sodium-flux growth, ammonothermal growth, and sublimation growth of SiC. The fabrication process, including ion implantation, diffusion, oxidation, metallization, and passivation is explained. The book provides details about metal-semiconductor contact, unipolar power diodes, and metal-insulator-semiconductor (MIS) capacitors. Bipolar power diodes, power switching devices, and edge terminations are also covered in this resource.
This authoritative resource offers professionals and students valuable assistance with their work and studies involving microwave circuit analysis and design. Readers gain a thorough understanding of the properties of planar transmission lines for integrated circuits. Moreover, this practical book presents matrix and computer-aided methods for analysis and design of circuit components. Engineers find in-depth details on input, output, and interstage networks, as well as coverage of stability, noise, and signal distortion.
Solid state power amplifiers (SSPA) are a critical part of many microwave systems. Designing SSPAs with monolithic microwave integrated circuits (MMIC) has boosted device performance to much higher levels focused on PA modules. This cutting-edge book offers engineers practical guidance in selecting the best power amplifier module for a particular application and interfacing the selected module with other power amplifier modules in the system. It also explains how to identify and mitigate peripheral issues concerning the PA modules, SSPAs, and microwave systems. This authoritative volume presents the critical techniques and underpinnings of SSPA design, enabling professionals to optimize device and system performance. Engineers gain the knowledge they need to evaluate the optimum topologies for the design of a chain of microwave devices, including power amplifiers. Additionally, the book addresses the interface between the microwave subsystems and the primary DC power, the control and monitoring circuits, and the thermal and EMI paths. Packed with 240 illustrations and over 430 equations, this detailed book provides the practical tools engineers need for their challenging projects in the field.
Describes the theory, modeling, and design of tunable mm-wave circuits and systems using CMOS, RF MEMS, and microwave liquid crystals.
All model parameters are fundamentally coupled together, so that directly measured individual parameters, although widely used and accepted, may initially only serve as good estimates. This comprehensive resource presents all aspects concerning the modeling of semiconductor field-effect device parameters based on gallium-arsenide (GaAs) and gallium nitride (GaN) technology. Metal-semiconductor field-effect transistors (MESFETs), high electron mobility transistors (HEMTs) and heterojunction bipolar transistors (HBTs), their structures and functions, and existing transistor models are also classified. The Shockley model is presented in order to give insight into semiconductor field-effect transistor (FET) device physics and explain the relationship between geometric and material parameters and device performance. Extraction of trapping and thermal time constants is discussed. A special section is devoted to standard nonlinear FET models applied to large-signal measurements, including static-/pulsed-DC and single-/two-tone stimulation. High power measurement setups for signal waveform measurement, wideband source-/load-pull measurement (including envelope source-/load pull) are also included, along with high-power intermodulation distortion (IMD) measurement setup (including envelope load-pull). Written by a world-renowned expert in the field, this book is the first to cover of all aspects of semiconductor FET device modeling in a single volume.