Download Free Passive Damping Book in PDF and EPUB Free Download. You can read online Passive Damping and write the review.

A guide to the application of viscoelastic damping materials to control vibration and noise of structures, machinery, and vehicles Active and Passive Vibration Damping is a practical guide to the application of passive as well as actively treated viscoelastic damping materials to control vibration and noise of structures, machinery and vehicles. The author — a noted expert on the topic — presents the basic principles and reviews the potential applications of passive and active vibration damping technologies. The text presents a combination of the associated physical fundamentals, governing theories and the optimal design strategies of various configurations of vibration damping treatments. The text presents the basics of various damping effective treatments such as constrained layers, shunted piezoelectric treatments, electromagnetic and shape memory fibers. Classical and new models are included as well as aspects of viscoelastic materials models that are analyzed from the experimental characterization of the material coefficients as well as their modeling. The use of smart materials to augment the vibration damping of passive treatments is pursued in depth throughout the book. This vital guide: Contains numerical examples that reinforce the understanding of the theories presented Offers an authoritative text from an internationally recognized authority and pioneer on the subject Presents, in one volume, comprehensive coverage of the topic that is not available elsewhere Presents a mix of the associated physical fundamentals, governing theories and optimal design strategies of various configurations of vibration damping treatments Written for researchers in vibration damping and research, engineers in structural dynamics and practicing engineers, Active and Passive Vibration Damping offers a hands-on resource for applying passive as well as actively treated viscoelastic damping materials to control vibration and noise of structures, machinery and vehicles.
The recent introduction of active and passive structural control methods has given structural designers powerful tools for performance-based design. However, structural engineers often lack the tools for the optimal selection and placement of such systems. In Building Control with Passive Dampers , Takewaki brings together most the reliable, state-of-the-art methods in practice around the world, arming readers with a real sense of how to address optimal selection and placement of passive control systems. The first book on optimal design, sizing, and location selection of passive dampers Combines theory and practical applications Describes step-by-step how to obtain optimal damper size and placement Covers the state-of-the-art in optimal design of passive control Integrates the most reliable techniques in the top literature and used in practice worldwide Written by a recognized expert in the area MATLAB code examples available from the book’s Companion Website This book is essential for post-graduate students, researchers, and design consultants involved in building control. Professional engineers and advanced undergraduates interested in seismic design, as well as mechanical engineers looking for vibration damping techniques, will also find this book a helpful reference. Code examples available at www.wiley.com/go/takewaki
Offers designers and users of mechanical systems an overview of structural stiffness and damping and their critical roles in mechanical design. The text assesses the relationship between stiffness and damping parameters in mechanical systems and structural materials. An accompanying disk contains detailed analyses of stiffness- and damping-critical systems.
Static analysis is a special case of dynamic analysis. The main reason for using static or pseudo-static analysis is the simplicity of the design and the analysis itself. Many structures such as buildings, bridges, dams, ships, airplanes, and more are studied by a dynamic analysis, which is a more complicated and time-consuming analysis compared to a static one; such structures studied in this way are safer and their behavior is closer to reality. Thanks to the important evolution of computer science, numerical methods, and mathematical models, we are boldly confronting the analysis of the most complex structures with huge dimensions, all this in a few hours in order to have an exact behavior of these structures closer to reality through the use of static dynamics and analysis. Structural Dynamics and Static Nonlinear Analysis From Theory to Application is concerned with the challenging subject of structural dynamics and the hydrodynamic principle as well as nonlinear static methods of analysis for seismic design of structures. The chapters are arranged into three parts. The first deals with single-degree of freedom (DOF) systems. The second part concerns systems with multiple degrees of freedom (DOF) with which one can create analytical and mathematical models of the most complex structures, passing through the hydrodynamic principle with an application in real cases. The last part sheds light on the principle of nonlinear static methods and its application in a real case. This book is ideal for academics, researchers, practicing structural engineers, and research students in the fields of civil and/or mechanical engineering along with practitioners interested in structural dynamics, static dynamics and analysis, and real-life applications.