Download Free Particulate Matter Book in PDF and EPUB Free Download. You can read online Particulate Matter and write the review.

In concise and distilled prose, Lemus presents a collection of still lifes, landscapes, and portraits of a challenging year that threatened all she loved most. “A love story that’s profoundly rooted in the emotional, geographical, and sociopolitical terrain of today . . . Like song lyrics or snapshots, her wisps and fragments of language take on a coded and otherworldly atmosphere, one that conveys wonder and dread almost subliminally . . . Particulate Matter is a moving example of how to write about climate change, not didactically, but with the deep impact of both personal loss and literary elegance.” —NPR Books “A tiny, powerful flame of a book. Lemus’ writing lands like sparks and ash, fragmented and tinged with grief . . . Particulate Matter is . . . an exploration of the simultaneity of delight, yearning, grief and confusion of being in love with a person and a place. Of being alive at all.” —San Francisco Chronicle Particulate Matter is the story of a year in Felicia Luna Lemus’s marriage when the world turned upside down. It’s set in Los Angeles, and it’s about love and crisis, loss and grief, the city and the ocean, ancestral ghosts and history haunting. Nature herself seemed to howl. Fires raged and covered the house Lemus and her spouse shared in ash. Everything crystallized. It was the most challenging and terrifying time she had ever experienced, and yet it was also a time when the sublime beauty of the everyday shone through with particular power and presence.
The U.S. Environmental Protection Agency (EPA) defines PM as a mixture of extremely small particles and liquid droplets comprising a number of components, including "acids (such as nitrates and sulfates), organic chemicals, metals, soil or dust particles, and allergens (such as fragments of pollen and mold spores)". The health effects of outdoor exposure to particulate matter (PM) are the subject of both research attention and regulatory action. Although much less studied to date, indoor exposure to PM is gaining attention as a potential source of adverse health effects. Indoor PM can originate from outdoor particles and also from various indoor sources, including heating, cooking, and smoking. Levels of indoor PM have the potential to exceed outdoor PM levels. Understanding the major features and subtleties of indoor exposures to particles of outdoor origin can improve our understanding of the exposureâ€"response relationship on which ambient air pollutant standards are based. The EPA's Indoor Environments Division commissioned the National Academies of Sciences, Engineering, and Medicine to hold a workshop examining the issue of indoor exposure to PM more comprehensively and considering both the health risks and possible intervention strategies. Participants discussed the ailments that are most affected by particulate matter and the attributes of the exposures that are of greatest concern, exposure modifiers, vulnerable populations, exposure assessment, risk management, and gaps in the science. This report summarizes the presentations and discussions from the workshop.
Recent advances in air pollution monitoring and modeling capabilities have made it possible to show that air pollution can be transported long distances and that adverse impacts of emitted pollutants cannot be confined to one country or even one continent. Pollutants from traffic, cooking stoves, and factories emitted half a world away can make the air we inhale today more hazardous for our health. The relative importance of this "imported" pollution is likely to increase, as emissions in developing countries grow, and air quality standards in industrial countries are tightened. Global Sources of Local Pollution examines the impact of the long-range transport of four key air pollutants (ozone, particulate matter, mercury, and persistent organic pollutants) on air quality and pollutant deposition in the United States. It also explores the environmental impacts of U.S. emissions on other parts of the world. The book recommends that the United States work with the international community to develop an integrated system for determining pollution sources and impacts and to design effective response strategies. This book will be useful to international, federal, state, and local policy makers responsible for understanding and managing air pollution and its impacts on human health and well-being.
The main objective of these updated global guidelines is to offer health-based air quality guideline levels, expressed as long-term or short-term concentrations for six key air pollutants: PM2.5, PM10, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. In addition, the guidelines provide interim targets to guide reduction efforts of these pollutants, as well as good practice statements for the management of certain types of PM (i.e., black carbon/elemental carbon, ultrafine particles, particles originating from sand and duststorms). These guidelines are not legally binding standards; however, they provide WHO Member States with an evidence-informed tool, which they can use to inform legislation and policy. Ultimately, the goal of these guidelines is to help reduce levels of air pollutants in order to decrease the enormous health burden resulting from the exposure to air pollution worldwide.
"This publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risk to Humans, which met in Lyon, 8-15 October 2013."
This book presents revised guideline values for the four most common air pollutants - particulate matter, ozone, nitrogen dioxide and sulfur dioxide - based on a recent review of the accumulated scientific evidence. The rationale for selection of each guideline value is supported by a synthesis of information emerging from research on the health effects of each pollutant. As a result, these guidelines now also apply globally. They can be read in conjunction with Air quality guidelines for Europe, 2nd edition, which is still the authority on guideline values for all other air pollutants. As well as revised guideline values, this book makes a brief yet comprehensive review of the issues affecting the application of the guidelines in risk assessment and policy development. Further, it summarizes information on: . pollution sources and levels in various parts of the world, . population exposure and characteristics affecting sensitivity to pollution, . methods for quantifying the health burden of air pollution, and . the use of guidelines in developing air quality standards and other policy tools. Finally, the special case of indoor air pollution is explored. Prepared by a large team of renowned international experts who considered conditions in various parts of the globe, these guidelines are applicable throughout the world. They provide reliable guidance for policy-makers everywhere when considering the various options for air quality management.
This book presents the most up-to-date research and information regarding the origin, chemistry, fate and health impacts of airborne particulate matter in urban areas, a topic which has received a great deal of attention in recent years due to documented relationships between exposure and health effects such as asthma. With internationally recognised researchers and academics presenting their work and key concepts and approaches from a variety of disciplines, including environmental and analytical chemistry, biology, toxicology, mineralogy and the geosciences, this book addresses the topic of urban airborne particulate matter in a comprehensive, multidisciplinary manner. Topics and research addressed in the book range from common methodological approaches used to sample and analyse the composition of airborne particulates to our knowledge regarding their potential to impact human health and the various policy approaches taken internationally to regulate particulate matter levels.
Non-exhaust emissions of particulate matter constitute a little-known but rising share of emissions from road traffic and have significant negative impacts on public health. This report synthesizes the current state of knowledge about the nature, causes, and consequences of non-exhaust particulate emissions. It also projects how particulate matter emissions from non-exhaust sources may evolve in future years and reflects on policy instrument mixes that can address this largely ignored environmental issue.
The book covers the three largest sources of particulate matter pollution in five chapters. These sources constitute three of the top ten public health problems in the world today and far outstrip any other environmental health threats in terms of health impact. The book begins with indoor solid fuel combustion for cooking in lower income countries and tells the story of how this problem was identified and recent efforts to eliminate it. The book next looks at tobacco smoking and second hand smoke, again reviewing the history of how these problems were identified scientifically and the fierce industry push back against the science. The last two chapters cover ambient particulate matter in the outdoor air. They address fine and ultrafine particles, describing the pioneering work on fine PM, the subsequent industry attacks on the scientists and then the emerging interest and concern about ultrafine particles, an area of research in which the author has participated. This book is geared towards non-scientists, including high school and college students.
This volume is of great importance to humans and other living organisms. The study of water quality draws information from a variety of disciplines including chemistry, biology, mathematics, physics, engineering, and resource management. University training in water quality is often limited to specialized courses in engineering, ecology, and fisheries curricula. This book also offers a basic understanding of water quality to professionals who are not formally trained in the subject. The revised third edition updates and expands the discussion, and incorporates additional figures and illustrative problems. Improvements include a new chapter on basic chemistry, a more comprehensive chapter on hydrology, and an updated chapter on regulations and standards. Because it employs only first-year college-level chemistry and very basic physics, the book is well-suited as the foundation for a general introductory course in water quality. It is equally useful as a guide for self-study and an in-depth resource for general readers.