Download Free Parking Lot Runoff Quality And Treatment Efficiency Of A Stormwater Filtration Device Madison Wisconsin 2005 07 Book in PDF and EPUB Free Download. You can read online Parking Lot Runoff Quality And Treatment Efficiency Of A Stormwater Filtration Device Madison Wisconsin 2005 07 and write the review.

To evaluate the treatment efficiency of a stormwaterfiltration device (SFD) for potential use at Wisconsin Department of Transportation (WisDOT) park-and-ride facilities, a SFD was installed at an employee parking lot in downtown Madison, Wisconsin. This type of parking lot was chosen for the test site because the constituent concentrations and particle-size distributions (PSDs) were expected to be similar to those of a typical park-and-ride lot operated by WisDOT. The objective of this particular installation was to reduce loads of total suspended solids (TSS) in stormwater runoff to Lake Monona. This study also was designed to provide a range of treatment efficiencies expected for a SFD. Samples from the inlet and outlet were analyzed for 33 organic and inorganic constituents, including 18 polycyclic aromatic hydrocarbons (PAHs). Samples were also analyzed for physical properties, including PSD.
AbstractA hydrodynamic-settling device was installed in 2004 to treat stormwater runoff from a roof and parking lot located at the Water Utility Administration Building in Madison, Wis. The U.S. Geological Survey, in cooperation with the Wiscon-sin Department of Natural Resources, the City of Madison, cities in the Waukesha Permit Group, Hydro International, Earth Tech, Inc., National Sanitation Foundation International, and the U.S. Environmental Protection Agency, monitored the device from November 2005 through September 2006 to evaluate it as part of the U.S. Environmental Protection Agency's Environmental Technology Verification Program. Twenty-three runoff events monitored for flow volume and water quality at the device's inlet and outlet were used to cal-culate the percentage of pollutant reduction for the device.
The primary objective of this report is to describe the effectiveness of two prefabricated-treatment devices in removing a suite of inorganic and organic water-quality constituents from stormwater runoff. This report also describes methods and techniques used to determine the effectiveness of these devices. Detailed data describing water quality, flow, constituent loads, and removal efficiencies are presented for inlet and outlet samples collected between June 2002 and October 2004. Another objective of this report is to add to the understanding of stormwater-runoff quality and quantity in an urban environment.
The rapid conversion of land to urban and suburban areas has profoundly altered how water flows during and following storm events, putting higher volumes of water and more pollutants into the nation's rivers, lakes, and estuaries. These changes have degraded water quality and habitat in virtually every urban stream system. The Clean Water Act regulatory framework for addressing sewage and industrial wastes is not well suited to the more difficult problem of stormwater discharges. This book calls for an entirely new permitting structure that would put authority and accountability for stormwater discharges at the municipal level. A number of additional actions, such as conserving natural areas, reducing hard surface cover (e.g., roads and parking lots), and retrofitting urban areas with features that hold and treat stormwater, are recommended.
This manual comprises a holistic view of urban runoff quality management. For the beginner, who has little previous exposure to urban runoff quality management, the manual covers the entire subject area from sources and effects of pollutants in urban runoff through the development of management plans and the design of controls. For the municipal stormwater management agency, guidance is given for developing a water quality management plan that takes into account receiving water use objectives, local climatology, regulation, financing and cost, and procedures for comparing various types of controls for suitability and cost effectiveness in a particular area. This guidance will also assist owners of large-scale urban development projects in cost-effectively and aesthetically integrating water quality control to the drainage plan. The manual is also directed to designers who desire a self-contained unit that discusses the design of specific quality controls for urban runoff.