Download Free Parametric Yield Of Vlsi Systems Under Variability Book in PDF and EPUB Free Download. You can read online Parametric Yield Of Vlsi Systems Under Variability and write the review.

This book contains extended and revised versions of the best papers presented during the fourteenth IFIP TC 10/WG 10.5 International Conference on Very Large Scale Integration. This conference provides a forum to exchange ideas and show industrial and academic research results in microelectronics design. The current trend toward increasing chip integration and technology process advancements brings about stimulating new challenges both at the physical and system-design levels.
Design considerations for low-power operations and robustness with respect to variations typically impose contradictory requirements. Low-power design techniques such as voltage scaling, dual-threshold assignment and gate sizing can have large negative impact on parametric yield under process variations. This book focuses on circuit/architectural design techniques for achieving low power operation under parameter variations. We consider both logic and memory design aspects and cover modeling and analysis, as well as design methodology to achieve simultaneously low power and variation tolerance, while minimizing design overhead. This book will discuss current industrial practices and emerging challenges at future technology nodes.
This book contains extended and revised versions of the best papers that were presented during the fifteenth edition of the IFIP/IEEE WG10.5 International Conference on Very Large Scale Integration, a global System-on-a-Chip Design & CAD conference. The 15th conference was held at the Georgia Institute of Technology, Atlanta, USA (October 15-17, 2007). Previous conferences have taken place in Edinburgh, Trondheim, Vancouver, Munich, Grenoble, Tokyo, Gramado, Lisbon, Montpellier, Darmstadt, Perth and Nice. The purpose of this conference, sponsored by IFIP TC 10 Working Group 10.5 and by the IEEE Council on Electronic Design Automation (CEDA), is to provide a forum to exchange ideas and show industrial and academic research results in the field of microelectronics design. The current trend toward increasing chip integration and technology process advancements brings about stimulating new challenges both at the physical and system-design levels, as well in the test of these systems. VLSI-SoC conferences aim to address these exciting new issues.
This text is based on the class notes of a VLSI signal processing circuit course series (EEE598) the author developed for the EE department at Arizona State University. The materials are organized into nineteen special topics covering various state-of-the-arts symmetry based VLSI circuit design techniques for basic VLSI circuit elements, circuit modules and systems, where the symmetry principle and methods with inherently low PVT sensitivity are used to design VLSI circuits with superior scalability and performance for various VLSI SOC applications.
This volume features the refereed proceedings of the 17th International Workshop on Power and Timing Modeling, Optimization and Simulation. Papers cover high level design, low power design techniques, low power analog circuits, statistical static timing analysis, power modeling and optimization, low power routing optimization, security and asynchronous design, low power applications, modeling and optimization, and more.
Analog Design Issues in Digital VLSI Circuits and Systems brings together in one place important contributions and up-to-date research results in this fast moving area. Analog Design Issues in Digital VLSI Circuits and Systems serves as an excellent reference, providing insight into some of the most challenging research issues in the field.
This book describes in detail the impact of process variations on Network-on-Chip (NoC) performance. The authors evaluate various NoC topologies under high process variation and explain the design of efficient NoCs, with advanced technologies. The discussion includes variation in logic and interconnect, in order to evaluate the delay and throughput variation with different NoC topologies. The authors describe an asynchronous router, as a robust design to mitigate the impact of process variation in NoCs and the performance of different routing algorithms is determined with/without process variation for various traffic patterns. Additionally, a novel Process variation Delay and Congestion aware Routing algorithm (PDCR) is described for asynchronous NoC design, which outperforms different adaptive routing algorithms in the average delay and saturation throughput for various traffic patterns.
The tools and techniques you need to break the analog design bottleneck! Ten years ago, analog seemed to be a dead-end technology. Today, System-on-Chip (SoC) designs are increasingly mixed-signal designs. With the advent of application-specific integrated circuits (ASIC) technologies that can integrate both analog and digital functions on a single chip, analog has become more crucial than ever to the design process. Today, designers are moving beyond hand-crafted, one-transistor-at-a-time methods. They are using new circuit and physical synthesis tools to design practical analog circuits; new modeling and analysis tools to allow rapid exploration of system level alternatives; and new simulation tools to provide accurate answers for analog circuit behaviors and interactions that were considered impossible to handle only a few years ago. To give circuit designers and CAD professionals a better understanding of the history and the current state of the art in the field, this volume collects in one place the essential set of analog CAD papers that form the foundation of today's new analog design automation tools. Areas covered are: * Analog synthesis * Symbolic analysis * Analog layout * Analog modeling and analysis * Specialized analog simulation * Circuit centering and yield optimization * Circuit testing Computer-Aided Design of Analog Integrated Circuits and Systems is the cutting-edge reference that will be an invaluable resource for every semiconductor circuit designer and CAD professional who hopes to break the analog design bottleneck.
Since process variation and chip performance uncertainties have become more pronounced as technologies scale down into the nanometer regime, accurate and efficient modeling or characterization of variations from the device to the architecture level have become imperative for the successful design of VLSI chips. This book provides readers with tools for variation-aware design methodologies and computer-aided design (CAD) of VLSI systems, in the presence of process variations at the nanometer scale. It presents the latest developments for modeling and analysis, with a focus on statistical interconnect modeling, statistical parasitic extractions, statistical full-chip leakage and dynamic power analysis considering spatial correlations, statistical analysis and modeling for large global interconnects and analog/mixed-signal circuits. Provides readers with timely, systematic and comprehensive treatments of statistical modeling and analysis of VLSI systems with a focus on interconnects, on-chip power grids and clock networks, and analog/mixed-signal circuits; Helps chip designers understand the potential and limitations of their design tools, improving their design productivity; Presents analysis of each algorithm with practical applications in the context of real circuit design; Includes numerical examples for the quantitative analysis and evaluation of algorithms presented. Provides readers with timely, systematic and comprehensive treatments of statistical modeling and analysis of VLSI systems with a focus on interconnects, on-chip power grids and clock networks, and analog/mixed-signal circuits; Helps chip designers understand the potential and limitations of their design tools, improving their design productivity; Presents analysis of each algorithm with practical applications in the context of real circuit design; Includes numerical examples for the quantitative analysis and evaluation of algorithms presented.