Download Free Parametric Statistical Change Point Analysis Book in PDF and EPUB Free Download. You can read online Parametric Statistical Change Point Analysis and write the review.

Recently there has been a keen interest in the statistical analysis of change point detec tion and estimation. Mainly, it is because change point problems can be encountered in many disciplines such as economics, finance, medicine, psychology, geology, litera ture, etc. , and even in our daily lives. From the statistical point of view, a change point is a place or time point such that the observations follow one distribution up to that point and follow another distribution after that point. Multiple change points problem can also be defined similarly. So the change point(s) problem is two fold: one is to de cide if there is any change (often viewed as a hypothesis testing problem), another is to locate the change point when there is a change present (often viewed as an estimation problem). The earliest change point study can be traced back to the 1950s. During the fol lowing period of some forty years, numerous articles have been published in various journals and proceedings. Many of them cover the topic of single change point in the means of a sequence of independently normally distributed random variables. Another popularly covered topic is a change point in regression models such as linear regres sion and autoregression. The methods used are mainly likelihood ratio, nonparametric, and Bayesian. Few authors also considered the change point problem in other model settings such as the gamma and exponential.
The explosive development of information science and technology puts in new problems involving statistical data analysis. These problems result from higher re quirements concerning the reliability of statistical decisions, the accuracy of math ematical models and the quality of control in complex systems. A new aspect of statistical analysis has emerged, closely connected with one of the basic questions of cynergetics: how to "compress" large volumes of experimental data in order to extract the most valuable information from data observed. De tection of large "homogeneous" segments of data enables one to identify "hidden" regularities in an object's behavior, to create mathematical models for each seg ment of homogeneity, to choose an appropriate control, etc. Statistical methods dealing with the detection of changes in the characteristics of random processes can be of great use in all these problems. These methods have accompanied the rapid growth in data beginning from the middle of our century. According to a tradition of more than thirty years, we call this sphere of statistical analysis the "theory of change-point detection. " During the last fifteen years, we have witnessed many exciting developments in the theory of change-point detection. New promising directions of research have emerged, and traditional trends have flourished anew. Despite this, most of the results are widely scattered in the literature and few monographs exist. A real need has arisen for up-to-date books which present an account of important current research trends, one of which is the theory of non parametric change--point detection.
The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.
Change-point problems arise in a variety of experimental and mathematical sciences, as well as in engineering and health sciences. This rigorously researched text provides a comprehensive review of recent probabilistic methods for detecting various types of possible changes in the distribution of chronologically ordered observations. Further developing the already well-established theory of weighted approximations and weak convergence, the authors provide a thorough survey of parametric and non-parametric methods, regression and time series models together with sequential methods. All but the most basic models are carefully developed with detailed proofs, and illustrated by using a number of data sets. Contains a thorough survey of: The Likelihood Approach Non-Parametric Methods Linear Models Dependent Observations This book is undoubtedly of interest to all probabilists and statisticians, experimental and health scientists, engineers, and essential for those working on quality control and surveillance problems. Foreword by David Kendall
This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and make use of Bayesian methods to analyze ranking data. The book bridges the gap between parametric and nonparametric statistics and presents the best practices of the former while enjoying the robustness properties of the latter. This book can be used in a graduate course in nonparametrics, with parts being accessible to senior undergraduates. In addition, the book will be of wide interest to statisticians and researchers in applied fields.
This book covers the development of methods for detection and estimation of changes in complex systems. These systems are generally described by nonstationary stochastic models, which comprise both static and dynamic regimes, linear and nonlinear dynamics, and constant and time-variant structures of such systems. It covers both retrospective and sequential problems, particularly theoretical methods of optimal detection. Such methods are constructed and their characteristics are analyzed both theoretically and experimentally. Suitable for researchers working in change-point analysis and stochastic modelling, the book includes theoretical details combined with computer simulations and practical applications. Its rigorous approach will be appreciated by those looking to delve into the details of the methods, as well as those looking to apply them.
This book introduces theories, methods and applications of density ratio estimation, a newly emerging paradigm in the machine learning community.
Multivariate statistical analysis has undergone a rich and varied evolution during the latter half of the 20th century. Academics and practitioners have produced much literature with diverse interests and with varying multidisciplinary knowledge on different topics within the multivariate domain. Due to multivariate algebra being of sustained interest and being a continuously developing field, its appeal breaches laterally across multiple disciplines to act as a catalyst for contemporary advances, with its core inferential genesis remaining in that of statistics. It is exactly this varied evolution caused by an influx in data production, diffusion, and understanding in scientific fields that has blurred many lines between disciplines. The cross-pollination between statistics and biology, engineering, medical science, computer science, and even art, has accelerated the vast amount of questions that statistical methodology has to answer and report on. These questions are often multivariate in nature, hoping to elucidate uncertainty on more than one aspect at the same time, and it is here where statistical thinking merges mathematical design with real life interpretation for understanding this uncertainty. Statistical advances benefit from these algebraic inventions and expansions in the multivariate paradigm. This contributed volume aims to usher novel research emanating from a multivariate statistical foundation into the spotlight, with particular significance in multidisciplinary settings. The overarching spirit of this volume is to highlight current trends, stimulate a focus on, and connect multidisciplinary dots from and within multivariate statistical analysis. Guided by these thoughts, a collection of research at the forefront of multivariate statistical thinking is presented here which has been authored by globally recognized subject matter experts.
Non-Parametric Statistical Diagnosis