Download Free Parametric Model Of A Lunar Base For Mass And Cost Estimates Book in PDF and EPUB Free Download. You can read online Parametric Model Of A Lunar Base For Mass And Cost Estimates and write the review.

Designing a habitat for the lunar surface? You will need to know more than structural engineering. There are the effects of meteoroids, radiation, and low gravity. Then there are the psychological and psychosocial aspects of living in close quarters, in a dangerous environment, far away from home. All these must be considered when the habitat is sized, materials specified, and structure designed. This book provides an overview of various concepts for lunar habitats and structural designs and characterizes the lunar environment - the technical and the nontechnical. The designs take into consideration psychological comfort, structural strength against seismic and thermal activity, as well as internal pressurization and 1/6 g. Also discussed are micrometeoroid modeling, risk and redundancy as well as probability and reliability, with an introduction to analytical tools that can be useful in modeling uncertainties.
This book carries out approximate estimates of the costs of implementing ISRU on the Moon and Mars. It is found that no ISRU process on the Moon has much merit. ISRU on Mars can save a great deal of mass, but there is a significant cost in prospecting for resources and validating ISRU concepts. Mars ISRU might have merit, but not enough data are available to be certain. In addition, this book provides a detailed review of various ISRU technologies. This includes three approaches for Mars ISRU based on processing only the atmosphere: solid oxide electrolysis, reverse water gas shift reaction (RWGS), and absorbing water vapor directly from the atmosphere. It is not clear that any of these technologies are viable although the RWGS seems to have the best chance. An approach for combining hydrogen with the atmospheric resource is chemically very viable, but hydrogen is needed on Mars. This can be approached by bringing hydrogen from Earth or obtaining water from near-surface water deposits in the soil. Bringing hydrogen from Earth is problematic, so mining the regolith to obtain water seems to be the only way to go. This will require a sizable campaign to locate and validate useable water resources. Technologies for lunar ISRU are also reviewed, even though none of them provide significant benefits to near-term lunar missions. These include oxygen from lunar regolith, solar wind volatiles from regolith, and extraction of polar ice from permanently shaded craters.
Lunar Base Handbook provides an overview about the Moon and its environment, the current status of lunar base design, tools we need to design a lunar base, checklists and flow charts that outline the design process, and technological requirements of a lunar base. The main audience for this book is engineers, but it is also interesting for scientists, managers, lawyers, undergraduates, and high school students, and readable for the interested layman.
"Human spaceflight: mission analysis and design" is for you if you manage, design, or operate systems for human spaceflight! It provides end-to-end coverage of designing human space systems for Earth, Moon, and Mars. If you are like many others, this will become the dog-eared book that is always on your desk -and used. The book includes over 800 rules of thumb and sanity checks that will enable you to identify key issues and errors early in the design processes. This book was written by group of 67 professional engineers, managers, and educators from industry, government, and academia that collectively share over 600 years of space-related experience! The team from the United States, Austria, Canada, France, Germany, Japan, and Russia worked for four-and-one-half years to capture industry and government best practices and lessons-learned from industry and government in an effort to baseline global conceptual design experience for human spaceflight. "Human spaceflight: mission analysis and design" provides a much-needed big-picture perspective that can be used by managers, engineers and students to integrate the myriad of elements associated with human spaceflight.
1. Introduction / 2. Space system fundamentals / 3. Reviewing a cost estimate / 4. Space vehicle cost crosschecks / 5. Common issues in estimating space programs / 6. Resources for space system cost estimation / 7. Recommendations.