Download Free Parameterized Algorithms Book in PDF and EPUB Free Download. You can read online Parameterized Algorithms and write the review.

This comprehensive textbook presents a clean and coherent account of most fundamental tools and techniques in Parameterized Algorithms and is a self-contained guide to the area. The book covers many of the recent developments of the field, including application of important separators, branching based on linear programming, Cut & Count to obtain faster algorithms on tree decompositions, algorithms based on representative families of matroids, and use of the Strong Exponential Time Hypothesis. A number of older results are revisited and explained in a modern and didactic way. The book provides a toolbox of algorithmic techniques. Part I is an overview of basic techniques, each chapter discussing a certain algorithmic paradigm. The material covered in this part can be used for an introductory course on fixed-parameter tractability. Part II discusses more advanced and specialized algorithmic ideas, bringing the reader to the cutting edge of current research. Part III presents complexity results and lower bounds, giving negative evidence by way of W[1]-hardness, the Exponential Time Hypothesis, and kernelization lower bounds. All the results and concepts are introduced at a level accessible to graduate students and advanced undergraduate students. Every chapter is accompanied by exercises, many with hints, while the bibliographic notes point to original publications and related work.
This comprehensive textbook presents a clean and coherent account of most fundamental tools and techniques in Parameterized Algorithms and is a self-contained guide to the area. The book covers many of the recent developments of the field, including application of important separators, branching based on linear programming, Cut & Count to obtain faster algorithms on tree decompositions, algorithms based on representative families of matroids, and use of the Strong Exponential Time Hypothesis. A number of older results are revisited and explained in a modern and didactic way. The book provides a toolbox of algorithmic techniques. Part I is an overview of basic techniques, each chapter discussing a certain algorithmic paradigm. The material covered in this part can be used for an introductory course on fixed-parameter tractability. Part II discusses more advanced and specialized algorithmic ideas, bringing the reader to the cutting edge of current research. Part III presents complexity results and lower bounds, giving negative evidence by way of W[1]-hardness, the Exponential Time Hypothesis, and kernelization lower bounds. All the results and concepts are introduced at a level accessible to graduate students and advanced undergraduate students. Every chapter is accompanied by exercises, many with hints, while the bibliographic notes point to original publications and related work.
This book is a state-of-the-art introduction into both algorithmic techniques for fixed-parameter tractability and the structural theory of parameterized complexity classes. It presents detailed proofs of recent advanced results that have not appeared in book form before and replaces the earlier publication "Parameterized Complexity" by Downey and Fellows as the definitive book on this subject. The book will interest computer scientists, mathematicians and graduate students engaged with algorithms and problem complexity.
An application-oriented introduction to the highly topical area of the development and analysis of efficient fixed-parameter algorithms for hard problems. Aimed at graduate and research mathematicians, algorithm designers, and computer scientists, it provides a fresh view on this highly innovative field of algorithmic research.
An approach to complexity theory which offers a means of analysing algorithms in terms of their tractability. The authors consider the problem in terms of parameterized languages and taking "k-slices" of the language, thus introducing readers to new classes of algorithms which may be analysed more precisely than was the case until now. The book is as self-contained as possible and includes a great deal of background material. As a result, computer scientists, mathematicians, and graduate students interested in the design and analysis of algorithms will find much of interest.
A complete introduction to recent advances in preprocessing analysis, or kernelization, with extensive examples using a single data set.
Introduces exciting new methods for assessing algorithms for problems ranging from clustering to linear programming to neural networks.
This book constitutes the refereed proceedings of the 19th Annual European Symposium on Algorithms, ESA 2011, held in Saarbrücken, Germany, in September 2011 in the context of the combined conference ALGO 2011. The 67 revised full papers presented were carefully reviewed and selected from 255 initial submissions: 55 out of 209 in track design and analysis and 12 out of 46 in track engineering and applications. The papers are organized in topical sections on approximation algorithms, computational geometry, game theory, graph algorithms, stable matchings and auctions, optimization, online algorithms, exponential-time algorithms, parameterized algorithms, scheduling, data structures, graphs and games, distributed computing and networking, strings and sorting, as well as local search and set systems.
This book constitutes the refereed proceedings of the Third International Workshop on Parameterized and Exact Computation, IWPEC 2008, held in Victoria, Canada, in May 2008 - co-located with the 40th ACM Symposium on Theory of Computing, STOC 2008. The 17 revised full papers presented together with 3 invited lectures were carefully reviewed and selected from 32 submissions. The topics addressed cover research in all aspects of parameterized and exact computation and complexity, including but not limited to new techniques for the design and analysis of parameterized and exact algorithms, parameterized complexity theory, relationship between parameterized complexity and traditional complexity classifications, applications of parameterized computation, implementation and experiments, high-performance computing and fixed-parameter tractability.
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.