Download Free Parameter Studies For The Vista Spacecraft Concept Book in PDF and EPUB Free Download. You can read online Parameter Studies For The Vista Spacecraft Concept and write the review.

The baseline design for the VISTA spacecraft concept employs a diode-pumped solid-state laser (DPSSL) driver. This type of driver is now under development at LLNL and elsewhere as an extension of the mature solid-state (glass) laser technology developed for terrestrial applications of inertial confinement fusion (ICF). A DPSSL is repratable up to at least 30 Hz, and has an efficiency soon to be experimentally verified of at least 10%. By using a detailed systems code including the essential physics of a DPSSL, we have run parameter studies for the baseline roundtrip (RT) to Mars with a 100-ton payload. We describe the results of these studies as a function of the optimized (minimum) RT flight duration. We also demonstrate why DT fuel gives the best performance, although DD, D3He, or even antimatter can be used, and why DT-ignited DD is probably the fuel most preferred. We also describe the overall power flow, showing where the fusion energy is ultimately utilized, and estimate the variation in performance to the planets dictated by variations in target gain and other parameters.
The technology of the next few decades could possibly allow us to explore with robotic probes the closest stars outside our Solar System, and maybe even observe some of the recently discovered planets circling these stars. This book looks at the reasons for exploring our stellar neighbors and at the technologies we are developing to build space probes that can traverse the enormous distances between the stars. In order to reach the nearest stars, we must first develop a propulsion technology that would take our robotic probes there in a reasonable time. Such propulsion technology has radically different requirements from conventional chemical rockets, because of the enormous distances that must be crossed. Surprisingly, many propulsion schemes for interstellar travel have been suggested and await only practical engineering solutions and the political will to make them a reality. This is a result of the tremendous advances in astrophysics that have been made in recent decades and the perseverance and imagination of tenacious theoretical physicists. This book explores these different propulsion schemes – all based on current physics – and the challenges they present to physicists, engineers, and space exploration entrepreneurs. This book will be helpful to anyone who really wants to understand the principles behind and likely future course of interstellar travel and who wants to recognizes the distinctions between pure fantasy (such as Star Trek’s ‘warp drive’) and methods that are grounded in real physics and offer practical technological solutions for exploring the stars in the decades to come.
The Parameter Space Investigation (PSI) method was developed to help engineers with a wide range of multicriteria optimization problems, such as design, identification, design of control systems, and operational development of prototypes. This unique resource shows you how to use PSI to construct a feasible solution set without limitations on the number of parameters and criteria. The book presents visualization tools that are used to construct the feasible solution set, conduct multicriteria analysis, and correct the initial problem statement. You explore topics that have not been covered in any other books, including multicriteria analysis from observational data, multicriteria optimization of large-scale systems in parallel mode, adopting the PSI method for database searches, and interpretation of the prototype improvement problem. The book also offers guidance in understanding and using the accompanying, newly released MOVI software package.
Inertial Confinement Fusion (ICF) is an ideal technology to power self-contained single-stage piloted (manned) spacecraft within the solar system because of its inherently high power/mass ratios and high specific impulses (i.e., high exhaust velocities). These technological advantages are retained when ICF is utilized with a magnetic thrust chamber, which avoids the plasma thermalization and resultant degradation of specific impulse that are unavoidable with the use of mechanical thrust chambers. We started with Rod Hyde's 1983 description of an ICF-powered engine concept using a magnetic thrust chamber, and conducted a more detailed systems study to develop a viable, realistic, and defensible spacecraft concept based on ICF technology projected to be available in the first half of the 21st century. The results include an entirely new conical spacecraft conceptual design utilizing near-existing radiator technology. We describe the various vehicle systems for this new concept, estimate the missions performance capabilities for general missions to the planets within the solar system, and describe in detail the performance for the baseline mission of a piloted roundtrip to Mars with a 100-ton payload. For this mission, we show that roundtrips totaling [ge]145 days are possible with advanced DT fusion technology and a total (wet) spacecraft mass of about 6000 metric tons. Such short-duration missions are advantageous to minimize the known cosmic-radiation hazards to astronauts, and are even more important to minimize the physiological deteriorations arising from zero gravity. These ICF-powered missions are considerably faster than those available using chemical or nuclear-electric-propulsion technologies with minimum-mass vehicle configurations. VISTA also offers onboard artificial gravity and propellant-based shielding from cosmic rays, thus reducing the known hazards and physiological deteriorations to insignificant levels. We emphasize, however, that the degree to which an ICF-powered vehicle can outperform a vehicle using any other realistic technology depends on the degree to which terrestrial-based ICF research can develop the necessary energy gain from ICF targets. With aggressive progress in such terrestrial research, VISTA will be able to make roundtrip missions to Pluto in [approx]7 years, and missions to points just beyond the solar system within a human lifetime.
Throughout most of the twentieth century, electric propulsion was considered the technology of the future. Now, the future has arrived. This important new book explains the fundamentals of electric propulsion for spacecraft and describes in detail the physics and characteristics of the two major electric thrusters in use today, ion and Hall thrusters. The authors provide an introduction to plasma physics in order to allow readers to understand the models and derivations used in determining electric thruster performance. They then go on to present detailed explanations of: Thruster principles Ion thruster plasma generators and accelerator grids Hollow cathodes Hall thrusters Ion and Hall thruster plumes Flight ion and Hall thrusters Based largely on research and development performed at the Jet Propulsion Laboratory (JPL) and complemented with scores of tables, figures, homework problems, and references, Fundamentals of Electric Propulsion: Ion and Hall Thrusters is an indispensable textbook for advanced undergraduate and graduate students who are preparing to enter the aerospace industry. It also serves as an equally valuable resource for professional engineers already at work in the field.
New results, fresh ideas and new applications in automotive and flight control systems are presented in this second edition of Robust Control. The book presents parametric methods and tools for the simultaneous design of several representative operating conditions and several design specifications in the time and frequency domains. It also covers methods for robustness analysis that guarantee the desired properties for all possible values of the plant uncertainty. A lot of practical application experience enters into the case studies of driver support systems that avoid skidding and rollover of cars, automatic car steering systems, flight controllers for unstable aircraft and engine-out controllers. The book also shows the historic roots of the methods, their limitations and research needs in robust control.